Space-time error control using a partition-of-unity dual-weighted residual method applied to low mach number combustion

In this work, a space-time scheme for goal-oriented a posteriori error estimation is proposed. The error estimator is evaluated using a partition-of-unity dual-weighted residual method. As application, a low mach number combustion equation is considered. In some numerical tests, different interpolation variants are investigated, while observing convergence orders and effectivity indices between true errors (obtained on a sufficiently refined mesh) and the error estimator.

[1]  Andreas Rademacher,et al.  Adaptive finite element methods for nonlinear hyperbolic problems of second order , 2010 .

[2]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[3]  Ulrich Langer,et al.  Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering , 2020, Comput. Methods Appl. Math..

[4]  Thomas Richter,et al.  Variational localizations of the dual weighted residual estimator , 2015, J. Comput. Appl. Math..

[5]  Andreas Schröder,et al.  Space adaptive finite element methods for dynamic obstacle problems. , 2008 .

[6]  T. Wick,et al.  Space‐time PU‐DWR error control and adaptivity for the heat equation , 2021, PAMM.

[7]  Thomas Wick,et al.  Adaptive time-step control for nonlinear fluid-structure interaction , 2018, J. Comput. Phys..

[8]  Andreas Schröder,et al.  Space adaptive finite element methods for dynamic Signorini problems , 2009 .

[9]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[10]  Lukas Failer,et al.  Optimal Control of Time-Dependent Nonlinear Fluid-Structure Interaction , 2017 .

[11]  Luca Heltai,et al.  The deal.II library, Version 9.2 , 2020, J. Num. Math..

[12]  David Wells,et al.  The deal.II library, Version 9.1 , 2019, J. Num. Math..

[13]  Rolf Rannacher,et al.  Goal‐oriented space–time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow , 2012 .

[14]  Markus Bause,et al.  Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space-time FEM codes , 2018, SoftwareX.

[15]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[16]  M. Schmich Adaptive Finite Element Methods for Computing Nonstationary Incompressible Flows , 2009 .