Berkeley supernova Ia program: data release of 637 spectra from 247 Type Ia supernovae

We present 637 low-redshift optical spectra collected by the Berkeley Supernova Ia Program (BSNIP) between 2009 and 2018, almost entirely with the Kast double spectrograph on the Shane 3~m telescope at Lick Observatory. We describe our automated spectral classification scheme and arrive at a final set of 626 spectra (of 242 objects) that are unambiguously classified as belonging to Type Ia supernovae (SNe~Ia). Of these, 70 spectra of 30 objects are classified as spectroscopically peculiar (i.e., not matching the spectral signatures of "normal" SNe~Ia) and 79 SNe~Ia (covered by 328 spectra) have complementary photometric coverage. The median SN in our final set has one epoch of spectroscopy, has a redshift of 0.0208 (with a low of 0.0007 and high of 0.1921), and is first observed spectroscopically 1.1 days after maximum light. The constituent spectra are of high quality, with a median signal-to-noise ratio of 31.8 pixel$^{-1}$, and have broad wavelength coverage, with $\sim 95\%$ covering at least 3700--9800~A. We analyze our dataset, focusing on quantitative measurements (e.g., velocities, pseudo-equivalent widths) of the evolution of prominent spectral features in the available early-time and late-time spectra. The data are available to the community, and we encourage future studies to incorporate our spectra in their analyses.

[1]  Wei Zheng,et al.  Lick Observatory Supernova Search follow-up program: photometry data release of 93 Type Ia supernovae , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[3]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[4]  K. Maguire,et al.  Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties , 2018, 1803.10252.

[5]  Armin Rest,et al.  The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.

[6]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[7]  Wei Zheng,et al.  An Empirical Fitting Method to Type Ia Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise Time, and Photospheric Velocity , 2017, 1712.01495.

[8]  David O. Jones,et al.  Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters , 2017, 1710.00846.

[9]  S. E. Persson,et al.  The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions , 2017, 1709.05146.

[10]  S. Jha,et al.  Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles , 2017, 1707.00715.

[11]  G. Anupama,et al.  SN 2015bp: adding to the growing population of transitional Type Ia supernovae , 2016, 1612.04735.

[12]  H.,et al.  Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj , 2016, 1611.09438.

[13]  Xiaofeng Wang,et al.  THE OXYGEN FEATURES IN TYPE Ia SUPERNOVAE AND IMPLICATIONS FOR THE NATURE OF THERMONUCLEAR EXPLOSIONS , 2016, 1605.07781.

[14]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[15]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[16]  Wei Zheng,et al.  SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova , 2016, 1603.04866.

[17]  Wei Zheng,et al.  Late-time spectroscopy of Type Iax Supernovae , 2016, 1601.05955.

[18]  C. Tao,et al.  IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE , 2015, 1511.01102.

[19]  Xiaofeng Wang,et al.  THE SILICON AND CALCIUM HIGH-VELOCITY FEATURES IN TYPE Ia SUPERNOVAE FROM EARLY TO MAXIMUM PHASES , 2015, 1508.02042.

[20]  A. B. Danilet,et al.  THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-14lp: DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS , 2015, 1507.04257.

[21]  Ipmu,et al.  Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core , 2015, 1504.04857.

[22]  R. Kirshner,et al.  500 days of SN 2013dy: Spectra and photometry from the ultraviolet to the infrared , 2015, 1504.02396.

[23]  A. Filippenko,et al.  High-velocity features of calcium and silicon in the spectra of Type Ia supernovae , 2015, 1502.07278.

[24]  I. Hook,et al.  Type Ia supernova spectral features in the context of their host galaxy properties , 2014, 1410.0091.

[25]  Adam A. Miller,et al.  ON THE PROGENITOR SYSTEM OF THE TYPE Iax SUPERNOVA 2014dt IN M61 , 2014, 1412.1088.

[26]  Peter E. Nugent,et al.  Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory , 2014, 1408.1430.

[27]  Adam A. Miller,et al.  CfAIR2: NEAR-INFRARED LIGHT CURVES OF 94 TYPE Ia SUPERNOVAE , 2014, 1408.0465.

[28]  Xiaofeng Wang,et al.  OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE NARROW-LINED TYPE Ia SN 2012fr IN NGC 1365 , 2014, 1403.0398.

[29]  R. Itoh,et al.  EARLY-PHASE PHOTOMETRY AND SPECTROSCOPY OF TRANSITIONAL TYPE Ia SN 2012ht: DIRECT CONSTRAINT ON THE RISE TIME , 2014, 1401.5160.

[30]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[31]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[32]  Mohan Ganeshalingam,et al.  High-velocity features in Type Ia supernova spectra , 2013, 1307.0563.

[33]  Wei Zheng,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA , 2013, 1310.5188.

[34]  S. E. Persson,et al.  SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT , 2013, 1305.6997.

[35]  Xiaofeng Wang,et al.  Evidence for Two Distinct Populations of Type Ia Supernovae , 2013, Science.

[36]  Daniel J. Carson,et al.  SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU , 2013, 1302.2926.

[37]  A. Filippenko,et al.  Berkeley Supernova Ia Program – V. Late-time spectra of Type Ia Supernovae , 2012, 1211.0279.

[38]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[39]  M. Graham,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2012cg: DISCOVERY AND EARLY-TIME FOLLOW-UP OBSERVATIONS , 2012, 1206.1328.

[40]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[41]  Mohan Ganeshalingam,et al.  Berkeley Supernova Ia Program – III. Spectra near maximum brightness improve the accuracy of derived distances to Type Ia supernovae , 2012, 1202.2130.

[42]  A. Filippenko,et al.  Berkeley Supernova Ia Program – II. Initial analysis of spectra obtained near maximum brightness , 2012, 1202.2129.

[43]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[44]  Heidelberg,et al.  A unified supernova catalogue , 2011, 1112.3592.

[45]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[46]  R. Beaton,et al.  VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig , 2011, 1109.0987.

[47]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[48]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.

[49]  D. Howell,et al.  Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.

[50]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[51]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[52]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[53]  J. Prieto,et al.  PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE , 2010, 1008.4126.

[54]  Sean M. Adkins,et al.  The low-resolution imaging spectrograph red channel CCD upgrade: fully depleted, high-resistivity CCDs for Keck , 2010, Astronomical Telescopes + Instrumentation.

[55]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[56]  Adam A. Miller,et al.  Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc , 2010, 1003.2417.

[57]  J. Sollerman,et al.  NEBULAR SPECTRA AND EXPLOSION ASYMMETRY OF TYPE Ia SUPERNOVAE , 2009, 0911.5484.

[58]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[59]  C. Tao,et al.  Using spectral flux ratios to standardize SN Ia luminosities , 2009, 0905.0340.

[60]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[61]  Y. Hsiao Spectroscopic diversity of Type Ia supernovae , 2009 .

[62]  G. Llingworth,et al.  The Evolution of Early-type Galaxies in Distant Clusters Ii.: Internal Kinematics of 55 Galaxies in the Z = 0.33 Cluster Cl1358+62 , 2008 .

[63]  M. S. Burns,et al.  Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study , 2007, astro-ph/0703629.

[64]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[65]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[66]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[67]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. II. Maximum Light , 2006 .

[68]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[69]  R. Foley,et al.  A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex , 2005, astro-ph/0504481.

[70]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[71]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[72]  G. Folatelli Spectral homogeneity of type Ia supernovae , 2004 .

[73]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[74]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[75]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[76]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[77]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[78]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[79]  M. Turatto,et al.  Nebular Velocities in Type Ia Supernovae and Their Relationship to Light Curves , 1998, astro-ph/9803229.

[80]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[81]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[82]  A. Riess,et al.  Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae , 1997, astro-ph/9707260.

[83]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[84]  P. Nugent Evidence for a Spectroscopic Sequence Among SNe IA , 1995 .

[85]  P. Nugent,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[86]  D. Kelson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters. II. Internal Kinematics of 55 Galaxies in the z=0.33 Cluster Cl 1358+62 , 1995, astro-ph/9908257.

[87]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[88]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[89]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[90]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[91]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[92]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[93]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[94]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[95]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[96]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[97]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[98]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[99]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[100]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[101]  S. Colgate,et al.  EARLY SUPERNOVA LUMINOSITY. , 1969 .

[102]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[103]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .