Bayesian inference on random simple graphs with power law degree distributions

We present a model for random simple graphs with a degree distribution that obeys a power law (i.e., is heavy-tailed). To attain this behavior, the edge probabilities in the graph are constructed from Bertoin-Fujita-Roynette-Yor (BFRY) random variables, which have been recently utilized in Bayesian statistics for the construction of power law models in several applications. Our construction readily extends to capture the structure of latent factors, similarly to stochastic blockmodels, while maintaining its power law degree distribution. The BFRY random variables are well approximated by gamma random variables in a variational Bayesian inference routine, which we apply to several network datasets for which power law degree distributions are a natural assumption. By learning the parameters of the BFRY distribution via probabilistic inference, we are able to automatically select the appropriate power law behavior from the data. In order to further scale our inference procedure, we adopt stochastic gradient ascent routines where the gradients are computed on minibatches (i.e., subsets) of the edges in the graph.

[1]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[2]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[3]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[4]  Daniel M. Roy,et al.  The Class of Random Graphs Arising from Exchangeable Random Measures , 2015, ArXiv.

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[6]  Tim Salimans,et al.  Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.

[7]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[8]  Seungjin Choi,et al.  Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models , 2016, NIPS.

[9]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[10]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[11]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[12]  Tamara Broderick,et al.  Completely random measures for modeling power laws in sparse graphs , 2016 .

[13]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[14]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[15]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[16]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  Jure Leskovec,et al.  Learning to Discover Social Circles in Ego Networks , 2012, NIPS.

[19]  Béla Bollobás,et al.  Random Graphs , 1985 .

[20]  H. Robbins A Stochastic Approximation Method , 1951 .

[21]  Luc Devroye,et al.  On simulation and properties of the stable law , 2014, Stat. Methods Appl..

[22]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[23]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[24]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[25]  David A. Knowles Stochastic gradient variational Bayes for gamma approximating distributions , 2015, 1509.01631.

[26]  Walter Dempsey,et al.  Atypical scaling behavior persists in real world interaction networks , 2015, ArXiv.

[27]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[28]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[29]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[30]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[31]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[32]  M. Yor,et al.  On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times , 2006 .

[33]  Lancelot F. James,et al.  Scaled subordinators and generalizations of the Indian buffet process , 2015, 1510.07309.

[34]  Zoubin Ghahramani,et al.  MCMC for Doubly-intractable Distributions , 2006, UAI.

[35]  Walter Dempsey,et al.  Edge exchangeable models for network data , 2016, ArXiv.

[36]  Emily B. Fox,et al.  Sparse graphs using exchangeable random measures , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[37]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .