Bayesian inference on random simple graphs with power law degree distributions
暂无分享,去创建一个
Zoubin Ghahramani | Seungjin Choi | Juho Lee | Lancelot F. James | Creighton Heaukulani | Zoubin Ghahramani | Seungjin Choi | Juho Lee | Creighton Heaukulani
[1] Stefan Bornholdt,et al. Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .
[2] Thomas L. Griffiths,et al. Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.
[3] Lada A. Adamic,et al. The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.
[4] Daniel M. Roy,et al. The Class of Random Graphs Arising from Exchangeable Random Measures , 2015, ArXiv.
[5] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[6] Tim Salimans,et al. Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.
[7] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[8] Seungjin Choi,et al. Finite-Dimensional BFRY Priors and Variational Bayesian Inference for Power Law Models , 2016, NIPS.
[9] A. Martin-Löf,et al. Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.
[10] T. Griffiths,et al. Bayesian nonparametric latent feature models , 2007 .
[11] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[12] Tamara Broderick,et al. Completely random measures for modeling power laws in sparse graphs , 2016 .
[13] Béla Bollobás,et al. The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.
[14] Léon Bottou,et al. Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.
[15] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[16] Edoardo M. Airoldi,et al. Mixed Membership Stochastic Blockmodels , 2007, NIPS.
[17] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[18] Jure Leskovec,et al. Learning to Discover Social Circles in Ego Networks , 2012, NIPS.
[19] Béla Bollobás,et al. Random Graphs , 1985 .
[20] H. Robbins. A Stochastic Approximation Method , 1951 .
[21] Luc Devroye,et al. On simulation and properties of the stable law , 2014, Stat. Methods Appl..
[22] Alessandro Vespignani,et al. Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.
[23] Thomas L. Griffiths,et al. Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.
[24] Michael I. Jordan,et al. Bayesian Nonparametric Latent Feature Models , 2011 .
[25] David A. Knowles. Stochastic gradient variational Bayes for gamma approximating distributions , 2015, 1509.01631.
[26] Walter Dempsey,et al. Atypical scaling behavior persists in real world interaction networks , 2015, ArXiv.
[27] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[28] T. Snijders,et al. Estimation and Prediction for Stochastic Blockstructures , 2001 .
[29] S. N. Dorogovtsev,et al. Evolution of networks , 2001, cond-mat/0106144.
[30] Albert-László Barabási,et al. Statistical mechanics of complex networks , 2001, ArXiv.
[31] Béla Bollobás,et al. Mathematical results on scale‐free random graphs , 2005 .
[32] M. Yor,et al. On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times , 2006 .
[33] Lancelot F. James,et al. Scaled subordinators and generalizations of the Indian buffet process , 2015, 1510.07309.
[34] Zoubin Ghahramani,et al. MCMC for Doubly-intractable Distributions , 2006, UAI.
[35] Walter Dempsey,et al. Edge exchangeable models for network data , 2016, ArXiv.
[36] Emily B. Fox,et al. Sparse graphs using exchangeable random measures , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[37] Remco van der Hofstad,et al. Random Graphs and Complex Networks: Volume 1 , 2016 .