Min-degree constrained minimum spanning tree problem with fixed centrals and terminals: Complexity, properties and formulations
暂无分享,去创建一个
Manoel B. Campêlo | Rafael Andrade | Críston P. de Souza | Fabio C. S. Dias | R. Andrade | Críston P. de Souza | F. C. S. Dias
[1] Laurence A. Wolsey,et al. Trees and Cuts , 1983 .
[2] Alexandre Salles da Cunha,et al. The min-degree constrained minimum spanning tree problem: Formulations and Branch-and-cut algorithm , 2014, Discret. Appl. Math..
[3] Alexandre Salles da Cunha,et al. Lower and upper bounds for the degree-constrained minimum spanning tree problem , 2007 .
[4] Douglas S. Reeves,et al. The delay-constrained minimum spanning tree problem , 1997, Proceedings Second IEEE Symposium on Computer and Communications.
[5] Pedro Martins,et al. VNS and second order heuristics for the min-degree constrained minimum spanning tree problem , 2009, Comput. Oper. Res..
[6] Lou Caccetta,et al. Computational methods for the diameter restricted minimum weight spanning tree problem , 1994, Australas. J Comb..
[7] P. Hall. On Representatives of Subsets , 1935 .
[8] Barbaros Ç. Tansel,et al. Min-degree constrained minimum spanning tree problem: New formulation via Miller-Tucker-Zemlin constraints , 2010, Comput. Oper. Res..
[9] P. Camerini,et al. On improving relaxation methods by modified gradient techniques , 1975 .
[10] Richard M. Karp,et al. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.
[11] Oystein Ore,et al. On a graph theorem by dirac , 1967 .
[12] R. A. Zemlin,et al. Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.
[13] Celso C. Ribeiro,et al. Variable neighborhood search for the degree-constrained minimum spanning tree problem , 2002, Discret. Appl. Math..
[14] R. Kipp Martin,et al. Using separation algorithms to generate mixed integer model reformulations , 1991, Oper. Res. Lett..
[15] Pedro Martins,et al. Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem , 2008, Eur. J. Oper. Res..
[16] William J. Cook,et al. Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.
[17] Luís Gouveia,et al. Reformulation by Intersection Method on the MST Problem with Lower Bound on the Number of Leaves , 2011, INOC.
[18] Alexandre Salles da Cunha,et al. A Parallel Lagrangian Relaxation Algorithm for the Min-Degree Constrained Minimum Spanning Tree Problem , 2012, ISCO.
[19] L. Caccetta,et al. A branch and cut method for the degree-constrained minimum spanning tree problem , 2001 .
[20] G. Nemhauser,et al. Integer Programming , 2020 .
[21] Abilio Lucena,et al. Using Lagrangian dual information to generate degree constrained spanning trees , 2006, Discret. Appl. Math..
[22] Luís Gouveia,et al. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints , 1995, Comput. Oper. Res..
[23] Antonio Frangioni,et al. Convergence Analysis of Deflected Conditional Approximate Subgradient Methods , 2009, SIAM J. Optim..
[24] L. Wolsey,et al. Chapter 9 Optimal trees , 1995 .
[25] Subhash C. Narula,et al. Degree-constrained minimum spanning tree , 1980, Comput. Oper. Res..
[26] Gilbert Laporte,et al. Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..
[27] Pedro Martins,et al. Min-degree constrained minimum spanning tree problem: complexity, properties, and formulations , 2012, Int. Trans. Oper. Res..
[28] Martin Fürer,et al. Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.