Nonconforming finite elements of higher order satisfying a new compatibility condition

Abstract For a general diffusion-convection-reaction equation, we analyze families of nonconforming finite elements of arbitrary order on a sequence of multilevel grids consisting of quadrilaterals or hexahedra. We prove existence and uniqueness of the discrete solution and optimal order of convergence in the broken H 1-seminorm and the L 2-norm. The novelty of our approach is that a new integral compatibility condition of the discrete functions across the element faces is introduced such that it can be solely treated on the reference element once for all faces of the grid. A numerical comparison between conforming and nonconforming discretizations will be given in the three-dimensional case.

[1]  Jean Elizabeth Roberts,et al.  A constructive method for deriving finite elements of nodal type , 1988 .

[2]  Gunar Matthies,et al.  On the reference mapping for quadrilateral and hexahedral finite elements on multilevel adaptive grids , 2007, Computing.

[3]  Dietrich Braess,et al.  A Multigrid Method for Nonconforming FE-Discretisations with Application to Non-Matching Grids , 1999, Computing.

[4]  Gunar Matthies,et al.  The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.

[5]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[6]  Gunar Matthies,et al.  Non-Nested Multi-Level Solvers for Finite Element Discretisations of Mixed Problems , 2002, Computing.

[7]  H. Fédérer Geometric Measure Theory , 1969 .

[8]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[9]  Gunar Matthies,et al.  Mapped Finite Elements on Hexahedra. Necessary and Sufficient Conditions for Optimal Interpolation Errors , 2001, Numerical Algorithms.

[10]  J. Maubach,et al.  Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems , 1997 .

[11]  V. Heuveline,et al.  An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes , 2004 .

[12]  Gunar Matthies,et al.  Nonconforming, Anisotropic, Rectangular Finite Elements of Arbitrary Order for the Stokes Problem , 2008, SIAM J. Numer. Anal..

[13]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[14]  Jml Maubach,et al.  Nonconforming finite elements of arbitrary degree over triangles , 2003 .

[15]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[16]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[17]  Dongwoo Sheen,et al.  Nonconforming quadrilateral finite elements:¶a correction , 2000 .

[18]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[19]  Gunar Matthies,et al.  A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems , 1998 .

[20]  Gunar Matthies,et al.  Inf-sup stable non-conforming finite elements of arbitrary order on triangles , 2005, Numerische Mathematik.

[21]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .