Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon

[1]  Hongwei Song,et al.  Carrier Interfacial Engineering by Bismuth Modification for Efficient and Thermoresistant Perovskite Solar Cells , 2018 .

[2]  L. Lombez,et al.  Slow Diffusion and Long Lifetime in Metal Halide Perovskites for Photovoltaics , 2018, The Journal of Physical Chemistry C.

[3]  H. Tao,et al.  Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells , 2018 .

[4]  J. Hanisch,et al.  Sputtered indium zinc oxide rear electrodes for inverted semitransparent perovskite solar cells without using a protective buffer layer , 2018 .

[5]  C. Ballif,et al.  Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction , 2018 .

[6]  F. C. Marques,et al.  Perovskite Thin Film Synthesised from Sputtered Lead Sulphide , 2018, Scientific Reports.

[7]  Laurent Lombez,et al.  Determination of transport properties in optoelectronic devices by time-resolved fluorescence imaging , 2017, OPTO.

[8]  P. Schouwink,et al.  The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process , 2017 .

[9]  Yongli Gao,et al.  Irreversible light-soaking effect of perovskite solar cells caused by light-induced oxygen vacancies in titanium oxide , 2017 .

[10]  Maarten Debucquoy,et al.  Four‐Terminal Perovskite/Silicon Multijunction Solar Modules , 2017 .

[11]  W. Tress Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open‐Circuit Voltage and Low Recombination , 2017 .

[12]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[13]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[14]  Xiang Zhang,et al.  2D Crystals Significantly Enhance the Performance of a Working Fuel Cell , 2017 .

[15]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[16]  Hongwei Song,et al.  Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer , 2017 .

[17]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[18]  Moritz H. Futscher,et al.  Efficiency Limit of Perovskite/Si Tandem Solar Cells , 2016 .

[19]  Zhengshan J. Yu,et al.  Efficient Semitransparent Perovskite Solar Cells for 23.0%‐Efficiency Perovskite/Silicon Four‐Terminal Tandem Cells , 2016 .

[20]  L. Li,et al.  The Progress of Interface Design in Perovskite‐Based Solar Cells , 2016 .

[21]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[22]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[23]  K. S. Tikhonov,et al.  Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements , 2016, Nature Communications.

[24]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[25]  M. Green,et al.  Optical analysis of perovskite/silicon tandem solar cells , 2016 .

[26]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[27]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[28]  M. Deepa,et al.  Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[30]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[31]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[32]  Yu Cheng,et al.  Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications , 2015, Scientific Reports.

[33]  M. Grätzel,et al.  Direct monitoring of ultrafast electron and hole dynamics in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[34]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[35]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[36]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[37]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[38]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[39]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[40]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[41]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[42]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[43]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[44]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[45]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[46]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[47]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[48]  Yusuf Selamet,et al.  High quality ITO thin films grown by dc and RF sputtering without oxygen , 2010 .

[49]  A. Tiwari,et al.  Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature , 2006 .