On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities
暂无分享,去创建一个
[1] A. J. Stam. Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..
[2] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[3] R. Phelps. Lectures on Choquet's Theorem , 1966 .
[4] V. Sudakov,et al. Geometric Problems in the Theory of Infinite-dimensional Probability Distributions , 1979 .
[5] A. Cohen,et al. Finite Mixture Distributions , 1982 .
[6] P. Meyer,et al. Sur les inegalites de Sobolev logarithmiques. I , 1982 .
[7] M. Gromov,et al. A topological application of the isoperimetric inequality , 1983 .
[8] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[9] Katalin Marton,et al. A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.
[10] D. Stroock,et al. Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .
[11] Geoffrey J. McLachlan,et al. Mixture models : inference and applications to clustering , 1989 .
[12] Jim Freeman. Probability Metrics and the Stability of Stochastic Models , 1991 .
[13] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[14] P. Diaconis,et al. LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .
[15] M. Talagrand. Transportation cost for Gaussian and other product measures , 1996 .
[16] K. Marton. Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .
[17] Feng-Yu Wang,et al. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .
[18] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[19] S. Aida. Uniform Positivity Improving Property, Sobolev Inequalities, and Spectral Gaps , 1998 .
[20] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[21] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities , 1999 .
[22] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[23] Spectral Gaps for Spin Systems: Some Non-convex Phase Examples , 2000 .
[24] Luis A. Caffarelli,et al. Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .
[25] M. Ledoux. The concentration of measure phenomenon , 2001 .
[26] R. Lata. On Some Inequalities for Gaussian Measures , 2002 .
[27] Convergence of the Poincaré Constant , 2002, math/0206227.
[28] D. Randall,et al. Markov chain decomposition for convergence rate analysis , 2002 .
[29] B. Helffer. Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics , 2002 .
[30] F. Barthe,et al. Sobolev inequalities for probability measures on the real line , 2003 .
[31] C. Villani. Topics in Optimal Transportation , 2003 .
[32] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[33] F. Barthe,et al. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry , 2004, math/0407219.
[34] A. Guillin,et al. Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.
[35] O. Johnson. CONVERGENCE OF THE POINCAR ´ E CONSTANT ∗ , 2004 .
[36] Mokshay M. Madiman,et al. Entropy, compound Poisson approximation, log-Sobolev inequalities and measure concentration , 2004, Information Theory Workshop.
[37] Eric Vigoda,et al. Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains , 2004, math/0503537.
[38] Sergey G. Bobkov. Concentration of normalized sums and a central limit theorem for noncorrelated random variables , 2004 .
[39] Ioannis Kontoyiannis,et al. Measure Concentration for Compound Poisson Distributions , 2005, Electronic Communications in Probability.
[40] B. Zegarliński,et al. Entropy Bounds and Isoperimetry , 2005 .
[41] C. Villani,et al. Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .
[42] Sergey G. Bobkov,et al. Generalized Symmetric Polynomials and an Approximate De Finetti Representation , 2005 .
[43] William G. Faris. Diffusion, quantum theory, and radically elementary mathematics , 2006 .
[44] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[45] Maria G. Reznikoff,et al. A new criterion for the logarithmic Sobolev inequality and two applications , 2007 .
[46] M. Ledoux,et al. Perturbations of functional inequalities using growth conditions , 2007 .
[47] S. Chatterjee. Spin glasses and Stein’s method , 2007, 0706.3500.
[48] F. Barthe,et al. Mass Transport and Variants of the Logarithmic Sobolev Inequality , 2007, 0709.3890.
[49] L. Miclo. Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ? , 2008 .
[50] P. Nurmi. Mixture Models , 2008 .
[51] P. Deb. Finite Mixture Models , 2008 .
[52] Asuka Takatsu,et al. On Wasserstein geometry of the space of Gaussian measures , 2008 .
[53] N. Gozlan. A characterization of dimension free concentration in terms of transportation inequalities , 2008, 0804.3089.