Morphing of Manifold-Valued Images Inspired by Discrete Geodesics in Image Spaces

This paper addresses the morphing of manifold-valued images based on the time discrete geodesic paths model of Berkels, Effland and Rumpf 2015. Although for our manifold-valued setting such an interpretation of the energy functional is not available so far, the model is interesting on its own. We prove the existence of a minimizing sequence within the set of $L^2(\Omega,\mathcal{H})$ images having values in a finite dimensional Hadamard manifold $\mathcal{H}$ together with a minimizing sequence of admissible diffeomorphism. To this end, we show that the continuous manifold-valued functions are dense in $L^2(\Omega,\mathcal{H})$. We propose a space discrete model based on a finite difference approach on a staggered grid, where we focus on the linearized elastic potential in the regularizing term. The numerical minimization alternates between i) the computation of a deformation sequence between given images via the parallel solution of certain registration problems for manifold-valued images, and ii) the computation of an image sequence with fixed first (template) and last (reference) frame based on a given sequence of deformations. Numerical examples give a proof of the concept of our ideas.

[1]  Xiaoyi Jiang,et al.  Motion Correction in Thoracic Positron Emission Tomography , 2014 .

[2]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[3]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[4]  H. Schumacher,et al.  Combined Reconstruction and Motion Correction in SPECT Imaging , 2009, IEEE Transactions on Nuclear Science.

[5]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[6]  Martin Styner,et al.  Metamorphic Geodesic Regression , 2012, MICCAI.

[7]  George Wolberg,et al.  Image morphing: a survey , 1998, The Visual Computer.

[8]  Amir Beck,et al.  First-Order Methods in Optimization , 2017 .

[9]  Wan-Chi Siu,et al.  Single image super-resolution using Gaussian process regression , 2011, CVPR 2011.

[10]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[11]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[12]  Pierre-Yves Gousenbourger,et al.  Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds , 2016, SIAM J. Imaging Sci..

[13]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[14]  Nevzat Onur Domaniç,et al.  Shape-based image reconstruction using linearized deformations , 2017, Inverse problems.

[15]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[16]  Bert Jüttler,et al.  Shape Metrics Based on Elastic Deformations , 2009, Journal of Mathematical Imaging and Vision.

[17]  Gabriele Steidl,et al.  Convergence of functions and their Moreau envelopes on Hadamard spaces , 2016, J. Approx. Theory.

[18]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[19]  Martin Rumpf,et al.  Discrete Geodesic Calculus in Shape Space and Applications in the Space of Viscous Fluidic Objects , 2013, SIAM J. Imaging Sci..

[20]  Jan Modersitzky,et al.  FAIR - Flexible Algorithms for Image Registration , 2009, Fundamentals of algorithms.

[21]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[22]  Alain Trouvé,et al.  Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson. , 2015, Annual review of biomedical engineering.

[23]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[24]  Chong Chen,et al.  Indirect Image Registration with Large Diffeomorphic Deformations , 2017, SIAM J. Imaging Sci..

[25]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[26]  Eldad Haber,et al.  A Multilevel Method for Image Registration , 2005, SIAM J. Sci. Comput..

[27]  Jan Sijbers,et al.  Fast and flexible X-ray tomography using the ASTRA toolbox. , 2016, Optics express.

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[30]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[31]  Gabriele Steidl,et al.  A Parallel Douglas Rachford Algorithm for Restoring Images with Values in Symmetric Hadamard Manifolds , 2015 .

[32]  Jan Sijbers,et al.  The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. , 2015, Ultramicroscopy.

[33]  Cristian Lorenz,et al.  4D modeling and estimation of respiratory motion for radiation therapy , 2013 .

[34]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[35]  Benjamin Berkels,et al.  Time Discrete Geodesic Paths in the Space of Images , 2015, SIAM J. Imaging Sci..

[36]  George Wolberg,et al.  Digital image warping , 1990 .

[37]  L. Younes Shapes and Diffeomorphisms , 2010 .

[38]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[39]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[40]  R. Chan,et al.  Restoration of Manifold-Valued Images by Half-Quadratic Minimization , 2015, 1505.07029.

[41]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[42]  Benjamin Berkels,et al.  Mumford–Shah Model for One-to-One Edge Matching , 2007, IEEE Transactions on Image Processing.

[43]  Radu Ioan Bot,et al.  A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..

[44]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[45]  J. Ball Global invertibility of Sobolev functions and the interpenetration of matter , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[46]  Gabriele Steidl,et al.  Examplar-Based Face Colorization Using Image Morphing , 2017, J. Imaging.

[47]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[48]  Alexander Effland Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces , 2017 .

[49]  Gabriele Steidl,et al.  First order algorithms in variational image processing , 2014, ArXiv.

[50]  Jing Yuan,et al.  Simultaneous Higher-Order Optical Flow Estimation and Decomposition , 2007, SIAM J. Sci. Comput..

[51]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[52]  Johan Karlsson,et al.  Generalized Sinkhorn Iterations for Regularizing Inverse Problems Using Optimal Mass Transport , 2016, SIAM J. Imaging Sci..

[53]  M. Bacák Convex Analysis and Optimization in Hadamard Spaces , 2014 .

[54]  K J Batenburg,et al.  Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). , 2011, Journal of structural biology.

[55]  Sebastian Ehrlichmann,et al.  Metric Spaces Of Non Positive Curvature , 2016 .

[56]  Laurent Younes,et al.  Metamorphosis of images in reproducing kernel Hilbert spaces , 2014, Adv. Comput. Math..

[57]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[58]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[60]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[61]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[62]  Chen Chong,et al.  Image reconstruction through metamorphosis , 2018 .

[63]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[64]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[65]  Klaas Paul Pruessmann,et al.  Realistic Analytical Phantoms for Parallel Magnetic Resonance Imaging , 2012, IEEE Transactions on Medical Imaging.

[66]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .