SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries

We present here SIMPLIcity (semantics-sensitive integrated matching for picture libraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. An image is represented by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. The system classifies images into semantic categories. Potentially, the categorization enhances retrieval by permitting semantically-adaptive searching methods and narrowing down the searching range in a database. A measure for the overall similarity between images is developed using a region-matching scheme that integrates properties of all the regions in the images. The application of SIMPLIcity to several databases has demonstrated that our system performs significantly better and faster than existing ones. The system is fairly robust to image alterations.

[1]  G. W. Snedecor STATISTICAL METHODS , 1967 .

[2]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[3]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[4]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[5]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  Rosalind W. Picard,et al.  Finding similar patterns in large image databases , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[9]  Josef Bigün,et al.  N-folded Symmetries by Complex Moments in Gabor Space and their Application to Unsupervised Texture Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Howard D. Wactlar,et al.  Informedia: improving access to digital video , 1994, INTR.

[11]  S. Chatterjee,et al.  Similarity measures for image databases , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[12]  Ramesh C. Jain,et al.  Similarity measures for image databases , 1995, Electronic Imaging.

[13]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[14]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[15]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[16]  Anil K. Jain,et al.  Is there any texture in the image? , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[17]  David A. Forsyth,et al.  Finding Naked People , 1996, ECCV.

[18]  Amarnath Gupta,et al.  Visual information retrieval , 1997, CACM.

[19]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[20]  Euripides G. M. Petrakis,et al.  Similarity Searching in Medical Image Databases , 1997, IEEE Trans. Knowl. Data Eng..

[21]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[22]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[23]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[24]  James Ze Wang,et al.  System for screening objectionable images , 1998, Comput. Commun..

[25]  Aidong Zhang,et al.  Semantic clustering and querying on heterogeneous features for visual data , 1998, MULTIMEDIA '98.

[26]  James Ze Wang,et al.  Content-based image indexing and searching using Daubechies' wavelets , 1998, International Journal on Digital Libraries.

[27]  M. Fischler,et al.  Visual Similarity, Judgmental Certainty and Stereo Correspondence , 1998 .

[28]  Anil K. Jain,et al.  On image classification: city vs. landscape , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[29]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[30]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[31]  John R. Smith,et al.  Image Classification and Querying Using Composite Region Templates , 1999, Comput. Vis. Image Underst..

[32]  Carlo Tomasi,et al.  Perceptual metrics for image database navigation , 1999 .

[33]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[34]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[35]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Carlo Tomasi,et al.  The Earth Mover’s Distance , 2001 .

[37]  James Ze Wang,et al.  Unsupervised Multiresolution Segmentation for Images with Low Depth of Field , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Aidong Zhang,et al.  SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data , 2002, IEEE Trans. Knowl. Data Eng..