A CLASS OF DISCONTINUOUS PETROV-GALERKIN METHODS. PART II: OPTIMAL TEST FUNCTIONS

We lay out a program for constructing discontinuous Petrov-Galerkin (DPG) schemes having test function spaces that are automatically computable to guarantee stability. Given a trial space, a DPG discretization using its optimal test space counterpart inherits stability from the well-posedness of the undiscretized problem. Although the question of stable test space choice had attracted the attention of many previous authors, the novelty in our approach lies in the fact we identify a discontinuous Galerkin (DG) framework wherein test functions, arbitrarily close to the optimal ones, can be locally computed. The idea is presented abstractly and its feasibility illustrated through several theoretical and numerical examples.

[1]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[2]  I. Babuska Error-bounds for finite element method , 1971 .

[3]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[4]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[5]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[6]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables , 1986 .

[7]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[8]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[9]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[10]  Philippe Blanchard,et al.  Variational Methods in Mathematical Physics , 1992 .

[11]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[12]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[13]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[14]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[15]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[16]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[17]  Sysi-Aho Marko,et al.  The Finite Difference Method in Partial Differential Equations , 2001 .

[18]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[19]  C. Bottasso,et al.  The discontinuous Petrov–Galerkin method for elliptic problems , 2002 .

[20]  T. F. Russell,et al.  An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). , 2002 .

[21]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[22]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[23]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[24]  P. Causin,et al.  FLUX-UPWIND STABILIZATION OF THE DISCONTINUOUS PETROV-GALERKIN FORMULATION WITH LAGRANGE MULTIPLIERS FOR ADVECTION-DIFFUSION PROBLEMS ∗ , 2005 .

[25]  Carlo L. Bottasso,et al.  A multiscale formulation of the Discontinuous Petrov–Galerkin method for advective–diffusive problems , 2005 .

[26]  Paola Causin,et al.  A Discontinuous Petrov-Galerkin Method with Lagrangian Multipliers for Second Order Elliptic Problems , 2005, SIAM J. Numer. Anal..

[27]  Joachim Schöberl,et al.  A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems , 2008 .

[28]  Bo Dong,et al.  Optimal Convergence of the Original DG Method for the Transport-Reaction Equation on Special Meshes , 2008, SIAM J. Numer. Anal..

[29]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[30]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, J. Comput. Phys..

[31]  Mahboub Baccouch,et al.  Galerkin methods , 2010, Scholarpedia.

[32]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .