The Classification Problem for Amenable C*-Algebras

For thirty-five years, one of the most interesting and rewarding classes of operator algebras to study has been the approximately finite-dimensional C*-algebras of Glimm and Bratteli ([39], [7]).

[1]  The crossed product of a UHF algebra by a shift , 1993, Ergodic Theory and Dynamical Systems.

[2]  I. Putnam,et al.  Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .

[3]  E. Effros,et al.  Separable nuclear $C^\ast$-algebras and injectivity , 1976 .

[4]  B. Blackadar A SIMPLE C*-ALGEBRA WITH NO NONTRIVIAL PROJECTIONS , 2010 .

[5]  B. Blackadar,et al.  The Structure of Stable Algebraically Simple C*-Algebras , 1982 .

[6]  G. Elliott,et al.  Classification of certain infinite simpleC*-algebras, II , 1995 .

[7]  George A. Elliott,et al.  On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , 1976 .

[8]  O. Bratteli Inductive limits of finite dimensional C*-algebras , 1972 .

[9]  J. Villadsen The range of the Elliott invariant. , 1995 .

[10]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[11]  T. Giordano,et al.  Topological orbit equivalence and C*-crossed products. , 1995 .

[12]  O. Bratteli,et al.  Crossed products of totally disconnected spaces by , 1993, Ergodic Theory and Dynamical Systems.

[13]  Huzihiro Araki,et al.  Quantum and Non-Commutative Analysis , 1993 .

[14]  C. Pasnicu,et al.  Abelian \mathrm{C}^\ast-subalgebras of \mathrm{C}^\ast-algebras of real rank zero and inductive limit \mathrm{C}^\ast-algebras , 1996 .

[15]  G. Elliott,et al.  The state space of theK0-group of a simple separableC+-algebra , 1994 .

[16]  Huaxin Lin Approximation by normal elements with finite spectra in C∗-algebras of real rank zero , 1996 .

[17]  M. Rørdam Classification of inductive limits of Cuntz algebras. , 1993 .

[18]  G. Elliott,et al.  On inductive limits of matrix algebras over the two-torus , 1996 .

[19]  Mikael Rørdam,et al.  Extending states on preordered semigroups and the existence of quasitraces on C∗-algebras , 1992 .

[20]  M. Rørdam Classification of Certain Infinite Simple C*-Algebras , 1995 .

[21]  O. Bratteli,et al.  Reduction of real rank in inductive limits ofC*-algebras , 1992 .

[22]  On the topological stable rank of certain transformation group C*-algebras , 1990, Ergodic Theory and Dynamical Systems.

[23]  A. Connes On the cohomology of operator algebras , 1978 .

[24]  G. Elliott,et al.  On the classification of C*-algebras of real rank zero, V , 1996, 1811.06758.

[25]  U. Haagerup All nuclearC*-algebras are amenable , 1983 .

[26]  James Glimm,et al.  On a certain class of operator algebras , 1960 .

[27]  O. Bratteli,et al.  Non-commutative spheres , 1992 .

[28]  J. Cuntz K-theory for certain C-algebras , 1981 .

[29]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[30]  B. Blackadar Symmetries of the CAR algebra , 1990 .

[31]  J. Dixmier,et al.  On some C∗-algebras considered by Glimm , 1967 .

[32]  George A. Elliott,et al.  On the classification of C*-algebras of real rank zero. , 1993 .

[33]  A. Paterson Nuclear *-algebras have amenable unitary groups , 1992 .

[34]  G. Elliott DIMENSION GROUPS WITH TORSION , 1990 .

[35]  G. Elliott,et al.  The structure of the irrational rotation C*-algebra , 1993 .

[36]  G. Elliott A Classification of Certain Simple C*-Algebras , 1993 .

[37]  O. Bratteli On the Classification of C*-algebras of real Rank Zero, III: The Infinite Case , 1995 .

[38]  O. Bratteli,et al.  THE TEMPERATURE STATE SPACE OF A $C^{*}$-DYNAMICAL SYSTEM, I , 1986 .

[39]  K. Thomsen Inductive Limits of Interval Algebras: The Tracial State Space , 1994 .