Polynomial NARX Model Identification: a Wiener–Hammerstein Benchmark

Abstract This work discusses the performance of several NARX model identification techniques on a benchmark problem for black–box identification methods proposed in (Schoukens et al. , 2008), concerning a SISO electronic nonlinear system with a Wiener–Hammerstein structure, originally documented in (Vandersteen, 1997). The objective being the obtainment of an accurate simulation model, capable of replicating the dynamic behavior of the system without using past measured output data, both prediction error and simulation error minimization methods have been tested and compared.

[1]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[2]  Marcello Farina,et al.  Some convergence properties of multi-step prediction error identification criteria , 2008, 2008 47th IEEE Conference on Decision and Control.

[3]  Stephen A. Billings,et al.  An alternative solution to the model structure selection problem , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[4]  L. A. Aguirre,et al.  Dynamical effects of overparametrization in nonlinear models , 1995 .

[5]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[6]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[7]  Marcello Farina,et al.  Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models , 2009 .

[8]  Marco Lovera,et al.  NARX Model Identification with Error Filtering , 2008 .

[9]  Er-Wei Bai,et al.  A TWO-STAGE ALGORITHM FOR IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS , 2006 .

[10]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[11]  Luigi Piroddi,et al.  Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..

[12]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.