Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis

[1]  G. Manfredi,et al.  Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control , 2015, Brain Research.

[2]  S. Rossi,et al.  Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis , 2015, Front. Cell. Neurosci..

[3]  Yun-Bae Kim,et al.  Transplantation of Human Adipose Tissue-Derived Stem Cells Delays Clinical Onset and Prolongs Life Span in ALS Mouse Model , 2014, Cell transplantation.

[4]  K. Chu,et al.  Modulation of mitochondrial function by stem cell-derived cellular components. , 2014, Biochemical and biophysical research communications.

[5]  Yoon-Ho Hong,et al.  Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis , 2014, Journal of the Neurological Sciences.

[6]  J. Koistinaho,et al.  Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis , 2014, Front. Cell. Neurosci..

[7]  Kwang-Woo Lee,et al.  Intermittent Hypoxia Can Aggravate Motor Neuronal Loss and Cognitive Dysfunction in ALS Mice , 2013, PloS one.

[8]  F. Barbieri,et al.  Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model , 2013, Neuroscience.

[9]  B. Liss,et al.  Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis , 2013, The Journal of physiology.

[10]  K. Chu,et al.  Extracts of Adipose Derived Stem Cells Slows Progression in the R6/2 Model of Huntington's Disease , 2013, PloS one.

[11]  C. Niyibizi,et al.  Differentiating multipotent mesenchymal stromal cells generate factors that exert paracrine activities on exogenous MSCs: Implications for paracrine activities in bone regeneration. , 2012, Biochemical and biophysical research communications.

[12]  Yoon-Ho Hong,et al.  The neuroprotective effect of the GSK-3β inhibitor and influence on the extrinsic apoptosis in the ALS transgenic mice , 2012, Journal of the Neurological Sciences.

[13]  B. Spiegelman,et al.  Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. , 2012, Cell metabolism.

[14]  Michael Sendtner,et al.  Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[15]  G. Pasinetti,et al.  Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis , 2011, Molecular Neurodegeneration.

[16]  J. H. Kim,et al.  Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. , 2011, The Journal of investigative dermatology.

[17]  M. Matthay,et al.  Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors , 2011, Stem cells.

[18]  Hassan Azari,et al.  Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. , 2010, Journal of visualized experiments : JoVE.

[19]  D. Koya,et al.  Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1α in Skeletal Muscle , 2010, Evidence-based complementary and alternative medicine : eCAM.

[20]  H. Mizuno Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials. , 2010, Current opinion in molecular therapeutics.

[21]  J. Roh,et al.  Slowed progression in models of huntington disease by adipose stem cell transplantation , 2009, Annals of neurology.

[22]  I. Joo,et al.  Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice , 2009, Gene Therapy.

[23]  J. de Vellis,et al.  Stem cell‐based cell therapy in neurological diseases: A review , 2009, Journal of neuroscience research.

[24]  G. Lin,et al.  Defining stem and progenitor cells within adipose tissue. , 2008, Stem cells and development.

[25]  M. Gnecchi,et al.  Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy , 2008, Circulation research.

[26]  J. Crawley,et al.  Behavioral Phenotyping Strategies for Mutant Mice , 2008, Neuron.

[27]  Seung-Up Kim,et al.  Oral Administration of Memantine Prolongs Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2007, Journal of clinical neurology.

[28]  C. Hetz,et al.  The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis , 2007, Cell Death and Differentiation.

[29]  Youngchul Kim,et al.  Inhibition of glycogen synthase kinase-3 suppresses the onset of symptoms and disease progression of G93A-SOD1 mouse model of ALS , 2007, Experimental Neurology.

[30]  A. Schäffler,et al.  Concise Review: Adipose Tissue‐Derived Stromal Cells—Basic and Clinical Implications for Novel Cell‐Based Therapies , 2007, Stem cells.

[31]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[32]  Robert H. Brown,et al.  Molecular biology of amyotrophic lateral sclerosis: insights from genetics , 2006, Nature Reviews Neuroscience.

[33]  G. Martino,et al.  The therapeutic potential of neural stem cells , 2006, Nature Reviews Neuroscience.

[34]  Tomoyuki Nishikawa,et al.  Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue–Derived Stromal Cells , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[35]  S. Goldman Stem and progenitor cell–based therapy of the human central nervous system , 2005, Nature Biotechnology.

[36]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria , 2004, Neuron.

[37]  O. Lindvall,et al.  Stem cell therapy for human neurodegenerative disorders–how to make it work , 2004, Nature Medicine.

[38]  Keith L. March,et al.  Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells , 2004, Circulation.

[39]  F. Gage,et al.  Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model , 2003, Science.

[40]  C. Guégan,et al.  Programmed cell death in amyotrophic lateral sclerosis. , 2003, The Journal of clinical investigation.

[41]  Min Zhu,et al.  Human adipose tissue is a source of multipotent stem cells. , 2002, Molecular biology of the cell.

[42]  Zuoshang Xu,et al.  Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[43]  Jeffrey D. Rothstein,et al.  From charcot to lou gehrig: deciphering selective motor neuron death in als , 2001, Nature Reviews Neuroscience.

[44]  R. Sidman,et al.  Engraftable human neural stem cells respond to development cues, replace neurons, and express foreign genes , 1998, Nature Biotechnology.

[45]  J C Reed,et al.  Mitochondria and apoptosis. , 1998, Science.

[46]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[47]  W. Kunz,et al.  Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis , 1998, Journal of the Neurological Sciences.

[48]  L. Rowland,et al.  Amyotrophic Lateral Sclerosis , 1980, Neurology.

[49]  B. Liss,et al.  Selective mitochondrial Ca 2 + uptake deficit in disease endstage vulnerable motoneurons of the SOD 1 G 93 A mouse model of amyotrophic lateral sclerosis , 2013 .

[50]  J. Gal,et al.  Mitochondrial dysfunction in amyotrophic lateral sclerosis. , 2010, Biochimica et biophysica acta.