Programmable Crossbar Quantum-Dot Cellular Automata Circuits

Quantum-dot fabrication and characterization is a well-established technology, which is used in photonics, quantum optics, and nanoelectronics. Four quantum-dots placed at the corners of a square form a unit cell, which can hold a bit of information and serve as a basis for quantum-dot cellular automata (QCA) nanoelectronic circuits. Although several basic QCA circuits have been designed, fabricated, and tested, proving that quantum-dots can form functional, fast and low-power nanoelectronic circuits, QCA nanoelectronics still remain at its infancy. One of the reasons for this is the lack of design automation tools, which will facilitate the systematic design of large QCA circuits that contemporary applications demand. Here we present novel, programmable QCA circuits, which are based on crossbar architecture. These circuits can be programmed to implement any Boolean function in analogy to CMOS field-programmable gate arrays and open the road that will lead to full design automation of QCA nanoelectronic circuits. Using this architecture we designed and simulated QCA circuits that proved to be area efficient, stable, and reliable.

[1]  Ramesh Karri,et al.  Quantum-Dot Cellular Automata Design Guideline , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[2]  S. Bhanja,et al.  Estimation of Upper Bound of Power Dissipation in QCA Circuits , 2009, IEEE Transactions on Nanotechnology.

[3]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[4]  John P. Hayes,et al.  Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering , 1999, IEEE Des. Test Comput..

[5]  Earl E. Swartzlander,et al.  Serial Parallel Multiplier Design in Quantum-dot Cellular Automata , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[6]  Ioannis Karafyllidis,et al.  Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers , 2010, Int. J. Circuit Theory Appl..

[7]  Miha Mraz,et al.  Layout design of manufacturable quantum-dot cellular automata , 2012, Microelectron. J..

[8]  Earl E. Swartzlander,et al.  Design rules for Quantum-dot Cellular Automata , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[9]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[10]  Kamran Zamanifar,et al.  Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study , 2009, J. Syst. Archit..

[11]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[12]  S. Polisetti,et al.  QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing , 2008, 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[13]  Ioannis Karafyllidis,et al.  Design and Simulation of Modular Quantum-Dot Cellular Automata Multiplexers for Memory Accessing , 2010, J. Circuits Syst. Comput..

[14]  Keivan Navi,et al.  An Efficient Quantum-Dot Cellular Automata Full Adder Based on a New Convertible 7-Input Majority-Not Gate , 2020, IETE Journal of Research.

[15]  TaskinBaris,et al.  Improving line-based QCA memory cell design through dual phase clocking , 2008 .

[16]  Gary H. Bernstein,et al.  Experimental demonstration of a leadless quantum-dot cellular automata cell , 2000 .

[17]  Ismo Hänninen,et al.  Binary Adders on Quantum-Dot Cellular Automata , 2010, J. Signal Process. Syst..

[18]  S. Bhanja,et al.  Probabilistic Modeling of QCA Circuits Using Bayesian Networks , 2006, IEEE Transactions on Nanotechnology.

[19]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[20]  Saket Srivastava,et al.  QCAPro - An error-power estimation tool for QCA circuit design , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[21]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[22]  Michael T. Niemier,et al.  A design of and design tools for a novel quantum dot based microprocessor , 2000, Proceedings 37th Design Automation Conference.

[23]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[24]  Fabrizio Lombardi,et al.  A Serial Memory by Quantum-Dot Cellular Automata (QCA) , 2008, IEEE Transactions on Computers.

[25]  Spyros Tragoudas,et al.  Scalable Compact Test Pattern Generation for Path Delay Faults Based on Functions , 2009, 2009 27th IEEE VLSI Test Symposium.

[26]  M. Ottavi,et al.  A line-based parallel memory for QCA implementation , 2005, IEEE Transactions on Nanotechnology.

[27]  G. C. Sirakoulis,et al.  A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits , 2012, IEEE Transactions on Nanotechnology.

[28]  Mostafa Rahimi Azghadi,et al.  A new quantum-dot cellular automata full-adder , 2016, 2016 5th International Conference on Computer Science and Network Technology (ICCSNT).

[29]  D. Tougaw,et al.  Implementation of a crossbar network using quantum-dot cellular automata , 2005, IEEE Transactions on Nanotechnology.

[30]  Robert A. Wolkow,et al.  Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics , 2014, Field-Coupled Nanocomputing.

[31]  Omar P. Vilela Neto,et al.  USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[32]  Mohsen Hayati,et al.  Design and Optimization of Full Comparator Based on Quantum‐Dot Cellular Automata , 2012 .

[33]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[34]  Ramesh Karri,et al.  The Robust QCA Adder Designs Using Composable QCA Building Blocks , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[36]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[37]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[38]  Jing Huang,et al.  Analysis of missing and additional cell defects in sequential quantum-dot cellular automata , 2007, Integr..

[39]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[40]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[41]  Ioannis G. Karafyllidis,et al.  Design and simulation of modular 2 n to 1 quantum-dot cellular automata (QCA) multiplexers , 2010 .

[42]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[43]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[44]  Baris Taskin,et al.  Improving Line-Based QCA Memory Cell Design Through Dual Phase Clocking , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[45]  Jing Huang,et al.  Defect characterization and tolerance of QCA sequential devices and circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).