Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns

[1]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.

[2]  Donovan H. Parks,et al.  A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.) , 2018, The ISME Journal.

[3]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[4]  F. Rodríguez-Valera,et al.  Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment , 2018, Microbiome.

[5]  J. Fuhrman,et al.  Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling , 2018, The ISME Journal.

[6]  Tom O. Delmont,et al.  Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes , 2018, Nature Microbiology.

[7]  J. Heidelberg,et al.  Potential for primary productivity in a globally-distributed bacterial phototroph , 2018, The ISME Journal.

[8]  Ying Sun,et al.  Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation , 2018, Environmental microbiology.

[9]  Tom O. Delmont,et al.  Linking pangenomes and metagenomes: the Prochlorococcus metapangenome , 2018, PeerJ.

[10]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[11]  Thijs J. G. Ettema,et al.  Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life , 2017, Science.

[12]  S. Gribaldo,et al.  The growing tree of Archaea: new perspectives on their diversity, evolution and ecology , 2017, The ISME Journal.

[13]  B. Henrissat,et al.  Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico “Dead Zone” , 2016, mBio.

[14]  Francisco M. Cornejo-Castillo,et al.  Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition , 2017, Scientific Data.

[15]  Elaina D. Graham,et al.  Descriptor : The reconstruction of 2 , 631 draft metagenome-assembled genomes from the global oceans , 2018 .

[16]  Itai Sharon,et al.  Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota , 2017, Current Biology.

[17]  F. Rodríguez-Valera,et al.  Fine stratification of microbial communities through a metagenomic profile of the photic zone , 2017, bioRxiv.

[18]  Elaina D. Graham,et al.  290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology , 2017, bioRxiv.

[19]  Harald R. Gruber-Vodicka,et al.  Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation , 2016, Nature Microbiology.

[20]  E. Delong,et al.  Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology , 2016, Microbiology and Molecular Reviews.

[21]  Benjamin R. K. Roller,et al.  Exploiting rRNA Operon Copy Number to Investigate Bacterial Reproductive Strategies , 2016, Nature Microbiology.

[22]  Elaina D. Graham,et al.  BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation , 2016, bioRxiv.

[23]  Philip Hugenholtz,et al.  A catalogue of 136 microbial draft genomes from Red Sea metagenomes , 2016, Scientific Data.

[24]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[25]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[26]  Pieterjan Vanden Boer,et al.  Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence , 2016, Nature Microbiology.

[27]  J. Fuhrman,et al.  Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom , 2016, Nature Microbiology.

[28]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[29]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[30]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[31]  B. Baker,et al.  Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea , 2015, Nature Communications.

[32]  F. Rodríguez-Valera,et al.  Marine Group II Archaea, potentially important players in the global ocean carbon cycle , 2015, Front. Microbiol..

[33]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[34]  Christophe Caron,et al.  MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution , 2015, Database J. Biol. Databases Curation.

[35]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[36]  Rachelle M. Jensen,et al.  The ocean sampling day consortium , 2015, GigaScience.

[37]  D. Gudbjartsson,et al.  Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma , 2015, Nature Communications.

[38]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[39]  Peer Bork,et al.  Determinants of community structure in the global plankton interactome , 2015, Science.

[40]  Peer Bork,et al.  Open science resources for the discovery and analysis of Tara Oceans data , 2015, Scientific Data.

[41]  D. Mirman,et al.  Neural Organization of Spoken Language Revealed by Lesion-Symptom Mapping , 2015, Nature Communications.

[42]  Heather M. Wilcox,et al.  Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter , 2015, The ISME Journal.

[43]  F. Rodríguez-Valera,et al.  A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum , 2014, The ISME Journal.

[44]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[45]  P. Matias,et al.  Mannosylglycerate: structural analysis of biosynthesis and evolutionary history , 2014, Extremophiles.

[46]  H. Santos,et al.  Mannosylglycerate: structural analysis of biosynthesis and evolutionary history , 2014, Extremophiles.

[47]  F. Rodríguez-Valera,et al.  Pangenome Evidence for Extensive Interdomain Horizontal Transfer Affecting Lineage Core and Shell Genes in Uncultured Planktonic Thaumarchaeota and Euryarchaeota , 2014, Genome biology and evolution.

[48]  V. Müller,et al.  ATP synthases from archaea: the beauty of a molecular motor. , 2014, Biochimica et biophysica acta.

[49]  Neil D. Rawlings,et al.  MEROPS: the database of proteolytic enzymes, their substrates and inhibitors , 2013, Nucleic Acids Res..

[50]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[51]  Matthew N. Benedict,et al.  ITEP: An integrated toolkit for exploration of microbial pan-genomes , 2014, BMC Genomics.

[52]  B. Baker,et al.  Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling , 2013, The ISME Journal.

[53]  I. Salter,et al.  Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters , 2013, Proceedings of the National Academy of Sciences.

[54]  Edward C. Uberbacher,et al.  Gene and translation initiation site prediction in metagenomic sequences , 2012, Bioinform..

[55]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[56]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[57]  R. Morris,et al.  Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota , 2012, Science.

[58]  José D. Faraldo-Gómez,et al.  Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation , 2012, Proceedings of the National Academy of Sciences.

[59]  Alex Bateman,et al.  MEROPS: the database of proteolytic enzymes, their substrates and inhibitors , 2011, Nucleic Acids Res..

[60]  Stijn van Dongen,et al.  Using MCL to extract clusters from networks. , 2012, Methods in molecular biology.

[61]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[62]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[63]  E. Casamayor,et al.  Inter‐annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory) , 2010 .

[64]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[65]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[66]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[67]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[68]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[69]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[70]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[71]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[72]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[73]  E. Delong,et al.  Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea , 2006, Nature.

[74]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[75]  Hong Jiang,et al.  Supplemental Information , 2006 .

[76]  T. Reinthaler,et al.  Combining Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization and Microautoradiography To Detect Substrate Utilization by Bacteria and Archaea in the Deep Ocean , 2004, Applied and Environmental Microbiology.

[77]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[78]  Oded Béjà,et al.  Diversification and spectral tuning in marine proteorhodopsins , 2003, The EMBO journal.

[79]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[80]  E. Delong,et al.  Comparison of Fluorescently Labeled Oligonucleotide and Polynucleotide Probes for the Detection of Pelagic Marine Bacteria and Archaea , 2002, Applied and Environmental Microbiology.

[81]  Sean R. Eddy,et al.  The Pfam Protein Families Database , 2002, Nucleic Acids Res..

[82]  Marion Leclerc,et al.  Proteorhodopsin phototrophy in the ocean , 2001, Nature.

[83]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[84]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[85]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[86]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[87]  E. Delong,et al.  A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces , 2000, Applied and Environmental Microbiology.

[88]  E. Delong,et al.  A time series assessment of planktonic archaeal variability in the Santa Barbara Channel , 1999 .

[89]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[90]  E. Delong,et al.  Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel , 1997, Applied and environmental microbiology.

[91]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[92]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[93]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .