Constraining Radiatively Inefficient Accretion Flows with Polarization

The low-luminosity black hole Sgr A* provides a test bed for models of radiatively inefficient accretion flows (RIAFs). Recent submillimeter linear polarization measurements of Sgr A* have provided evidence that the electrons in the accretion flow are relativistic over a large range of radii. Here we show that these high temperatures result in elliptical plasma normal modes. Thus, polarized millimeter and submillimeter radiation emitted within RIAFs will undergo generalized Faraday rotation, a cyclic conversion between linear and circular polarization. This effect will not depolarize the radiation even if the rotation measure is extremely high. Rather, the beam will take on the linear and circular polarization properties of the plasma normal modes. As a result, polarization measurements of Sgr A* in this frequency regime will constrain the temperature, density, and magnetic profiles of RIAF models.

[1]  A. Loeb,et al.  Properties of the radio-emitting gas around Sgr A* , 2007, astro-ph/0702043.

[2]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[3]  W. Alef,et al.  Sub-Milliarcsecond Imaging of Sgr A* and M 87 , 2006, astro-ph/0607072.

[4]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[5]  H. Falcke,et al.  Variable Linear Polarization from Sagittarius A*: Evidence of a Hot Turbulent Accretion Flow , 2004, astro-ph/0411551.

[6]  D. Rouan,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[7]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[8]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[9]  H. Falcke,et al.  Circular polarization of radio emission from relativistic jets , 2001, astro-ph/0112398.

[10]  M. Begelman,et al.  Circular Polarization from Stochastic Synchrotron Sources , 2001, astro-ph/0112090.

[11]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[12]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[13]  J. Krolik,et al.  Global MHD Simulation of the Inner Accretion Disk in a Pseudo-Newtonian Potential , 2000, astro-ph/0006456.

[14]  E. Agol Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .

[15]  Holland,et al.  Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.

[16]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[17]  R. Narayan,et al.  Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.

[18]  R. Narayan,et al.  Numerical Simulations of Convective Accretion Flows in Three Dimensions , 2000, astro-ph/0004006.

[19]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[20]  E. Quataert,et al.  Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.

[21]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[22]  D. Melrose,et al.  Propagation-induced Circular Polarisation in Synchrotron Sources , 1998, Publications of the Astronomical Society of Australia.

[23]  D. Melrose The response tensor for a highly relativistic magnetized thermal plasma , 1997, Journal of Plasma Physics.

[24]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[25]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[26]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.

[27]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[28]  Douglas M. Eardley,et al.  A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .

[29]  C. Page The Drifting Sub-Pulse Phenomenon N PSR 0809 + 74 , 1973 .

[30]  A. Pacholczyk Circular repolarization in compact radio sources , 1973 .