Constraining Radiatively Inefficient Accretion Flows with Polarization
暂无分享,去创建一个
D. Astronomy | U. Arizona | D. Physics | D. Psaltis | F. Ozel | F. Özel | D. Ballantyne
[1] A. Loeb,et al. Properties of the radio-emitting gas around Sgr A* , 2007, astro-ph/0702043.
[2] J. Moran,et al. To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .
[3] W. Alef,et al. Sub-Milliarcsecond Imaging of Sgr A* and M 87 , 2006, astro-ph/0607072.
[4] J. M. Moran,et al. Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.
[5] H. Falcke,et al. Variable Linear Polarization from Sagittarius A*: Evidence of a Hot Turbulent Accretion Flow , 2004, astro-ph/0411551.
[6] D. Rouan,et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.
[7] Ramesh Narayan,et al. Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.
[8] D. Thompson,et al. The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.
[9] H. Falcke,et al. Circular polarization of radio emission from relativistic jets , 2001, astro-ph/0112398.
[10] M. Begelman,et al. Circular Polarization from Stochastic Synchrotron Sources , 2001, astro-ph/0112090.
[11] Fulvio Melia,et al. Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.
[12] UCLA,et al. Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.
[13] J. Krolik,et al. Global MHD Simulation of the Inner Accretion Disk in a Pseudo-Newtonian Potential , 2000, astro-ph/0006456.
[14] E. Agol. Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .
[15] Holland,et al. Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.
[16] E. Quataert,et al. Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.
[17] R. Narayan,et al. Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows , 2000, astro-ph/0004195.
[18] R. Narayan,et al. Numerical Simulations of Convective Accretion Flows in Three Dimensions , 2000, astro-ph/0004006.
[19] E. Quataert,et al. Convection-dominated Accretion Flows , 1999, astro-ph/9912440.
[20] E. Quataert,et al. Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.
[21] Roger D. Blandford,et al. On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.
[22] D. Melrose,et al. Propagation-induced Circular Polarisation in Synchrotron Sources , 1998, Publications of the Astronomical Society of Australia.
[23] D. Melrose. The response tensor for a highly relativistic magnetized thermal plasma , 1997, Journal of Plasma Physics.
[24] Ramesh Narayan,et al. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.
[25] R. Narayan,et al. Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.
[26] E. Phinney,et al. Ion-supported tori and the origin of radio jets , 1982, Nature.
[27] S. Ichimaru. Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .
[28] Douglas M. Eardley,et al. A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .
[29] C. Page. The Drifting Sub-Pulse Phenomenon N PSR 0809 + 74 , 1973 .
[30] A. Pacholczyk. Circular repolarization in compact radio sources , 1973 .