Brief Introduction to Computational Intelligence Paradigms for Fractional Calculus Researchers

This chapter introduces the various paradigms in computational intelligence commonly used to solve a wide variety of challenging problems in systems engineering for which analytical solutions are usually difficult to obtain. The foundations of these concepts are briefly reviewed and their importance and short comings are highlighted. The discussion mainly focusses on Artificial Neural Networks, Fuzzy sets and systems, global optimization techniques based on evolutionary and swarm approaches and evolutionary programming. Popular applications of these paradigms in systems theory are outlined with appropriate references.

[1]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[2]  Li-Xin Wang Stable adaptive fuzzy control of nonlinear systems , 1993, IEEE Trans. Fuzzy Syst..

[3]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[4]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[5]  Amit Konar,et al.  Computational Intelligence: Principles, Techniques and Applications , 2005 .

[6]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[7]  Jeffrey Horn,et al.  Finite Markov Chain Analysis of Genetic Algorithms with Niching , 1993, ICGA.

[8]  L. B. Rall,et al.  Computational Solution of Nonlinear Operator Equations , 1969 .

[9]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[10]  João Sequeira,et al.  Selection of controller parameters using genetic algorithms , 1992 .

[11]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Yoshiaki Ichikawa,et al.  Neural network application for direct feedback controllers , 1992, IEEE Trans. Neural Networks.

[13]  E. Camacho,et al.  Generalized Predictive Control , 2007 .

[14]  Dejan J. Sobajic,et al.  Neural-net computing and the intelligent control of systems , 1992 .

[15]  S. Chiu Using fuzzy logic in control applications: beyond fuzzy PID control , 1998 .

[16]  Stephen A. Billings,et al.  Non-linear system identification using neural networks , 1990 .

[17]  C. A. Murthy,et al.  Genetic Algorithm with Elitist Model and Its Convergence , 1996, Int. J. Pattern Recognit. Artif. Intell..

[18]  D. Mayne,et al.  Receding horizon control of nonlinear systems , 1990 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Michio Sugeno,et al.  On stability of fuzzy systems expressed by fuzzy rules with singleton consequents , 1999, IEEE Trans. Fuzzy Syst..

[21]  P. Fleming,et al.  Multi-objective genetic programming for nonlinear system identification , 1998 .

[22]  J. B. Gomm,et al.  Genetic approach to decentralised PI controller tuning for multivariable processes , 1999 .

[23]  Peter J. Fleming,et al.  Evolutionary Hinfin; design of an electromagnetic suspension control system for a maglev vehicle , 1997 .

[24]  John R. Koza,et al.  Routine human-competitive machine intelligence by means of genetic programming , 2004, SPIE Optics + Photonics.

[25]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[26]  Panos J. Antsaklis,et al.  Neural networks for control systems , 1990, IEEE Trans. Neural Networks.

[27]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[28]  David J. Murray-Smith,et al.  Nonlinear model structure identification using genetic programming , 1998 .

[29]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[30]  John R. Koza,et al.  Human-competitive results produced by genetic programming , 2010, Genetic Programming and Evolvable Machines.

[31]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[32]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[33]  Roger M. Goodall,et al.  LQG and GA solutions for active steering of railway vehicles , 2000 .

[34]  Bernard P. Zeigler,et al.  Designing fuzzy net controllers using genetic algorithms , 1995 .

[35]  Bernard Widrow,et al.  Neural nets for adaptive filtering and adaptive pattern recognition , 1988, Computer.

[36]  Mohamed Azlan Hussain,et al.  Review of the applications of neural networks in chemical process control - simulation and online implementation , 1999, Artif. Intell. Eng..

[37]  Jie Chen,et al.  Robust fault detection of dynamic systems via genetic algorithms , 1997 .

[38]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[39]  Helge-Björn Kuntze,et al.  A neuro-fuzzy supervisory control system for industrial batch processes , 2001, IEEE Trans. Fuzzy Syst..

[40]  K. R. Al-Balushi,et al.  Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection , 2003 .

[41]  Robert Babuška,et al.  Genetic algorithms for optimization in predictive control , 1997 .

[42]  D J Choi,et al.  A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. , 2001, Water research.

[43]  Hugh F. Durrant-Whyte,et al.  Fuzzy sliding-mode controllers with applications , 2001, IEEE Trans. Ind. Electron..

[44]  Marcello Chiaberge,et al.  A neuro-fuzzy approach to hybrid intelligent control , 1999 .

[45]  Anthony Tzes,et al.  Genetic-based fuzzy clustering for DC-motor friction identification and compensation , 1998, IEEE Trans. Control. Syst. Technol..

[46]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..