Regularity, calmness and support principle
暂无分享,去创建一个
[1] G. Stefani,et al. Properties of convex sets with application to differential theory of multivalued functions , 1978 .
[2] J. B. Hiriart-Urruty,et al. Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..
[3] T. H. III Sweetser,et al. A minimal set-valued strong derivative for vector-valued Lipschitz functions , 1977 .
[4] F. Clarke. Admissible relaxation in variational and control problems , 1975 .
[5] F. Clarke. The Generalized Problem of Bolza , 1976 .
[6] Hubert Halkin,et al. Necessary conditions for optimal control problems with differentiable or nondifferentiable data , 1978 .
[7] C. Berge. Topological Spaces: including a treatment of multi-valued functions , 2010 .
[8] Jonathan M. Borwein,et al. Multivalued convexity and optimization: A unified approach to inequality and equality constraints , 1977, Math. Program..
[9] F. Clarke,et al. Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .
[10] I. Ekeland. On the variational principle , 1974 .
[11] Jean-Baptiste Hiriart-Urruty,et al. On optimality conditions in nondifferentiable programming , 1978, Math. Program..
[12] A. D. Ioffe,et al. Necessary Conditions in Nonsmooth Optimization , 1984, Math. Oper. Res..
[13] F. S. De Blasi,et al. On the differentiability of multifunctions , 1976 .
[14] A. Ioffe. Regular points of Lipschitz functions , 1979 .
[15] A. Ioffe. Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps , 1984 .
[16] J. Hiriart-Urruty. Refinements of necessary optimality conditions in nondifferentiable programming II , 1979 .
[17] A. Balakrishnan. Introduction to Optimization Theory in a Hilbert Space , 1971 .
[18] J. Aubin. Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .
[19] F. Clarke. Extremal arcs and extended Hamiltonian systems , 1977 .
[20] P. H. Sach. Differentiability of Set-Valued Maps in Banach Spaces , 1988 .
[21] Richard B. Vinter,et al. Local Optimality Conditions and Lipschitzian Solutions to the Hamilton–Jacobi Equation , 1983 .
[22] A. Ioffe. Nonsmooth analysis: differential calculus of nondifferentiable mappings , 1981 .
[23] J. Penot. On regularity conditions in mathematical programming , 1982 .
[24] M. Hukuhara. INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .
[25] A. Ioffe. Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .
[26] F. Clarke,et al. Optimal solutions to differential inclusions , 1976 .
[27] T. F. Bridgland. Trajectory integrals of set valued functions. , 1970 .
[28] F. Clarke. Generalized gradients and applications , 1975 .
[29] B. Pourciau. Analysis and optimization of Lipschitz continuous mappings , 1977 .
[30] Jean-Paul Penot. On the existence of Lagrange multipliers in nonlinear programming in Banach spaces , 1981 .
[31] F. Clarke. Generalized gradients of Lipschitz functionals , 1981 .
[32] Stephen M. Robinson,et al. Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..
[33] J. Zowe,et al. Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .
[34] H. Banks,et al. A Differential Calculus for Multifunctions , 1970 .
[35] Frank H. Clarke,et al. A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..
[36] Pham Huy Dien,et al. On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints , 1985 .