Colonic epithelial cell diversity in health and inflammatory bowel disease

[1]  P. Henderson,et al.  Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. , 2019, Inflammatory bowel diseases.

[2]  Quin F. Wills,et al.  Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease , 2018, Cell.

[3]  F. Tang,et al.  Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing , 2018, Nature Cell Biology.

[4]  Anthony Maxwell,et al.  Dietary and Microbial Oxazoles Induce Intestinal Inflammation by Modulating Aryl Hydrocarbon Receptor Responses , 2018, Cell.

[5]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[6]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[7]  Michael Camilleri,et al.  Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders , 2018, Gut.

[8]  E. Liman,et al.  An evolutionarily conserved gene family encodes proton-selective ion channels , 2018, Science.

[9]  F. Chan,et al.  Inflammasome, Inflammation, and Tissue Homeostasis. , 2018, Trends in molecular medicine.

[10]  Stefan Tenzer,et al.  Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. , 2017, Journal of proteome research.

[11]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[12]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[13]  L. J. K. Wee,et al.  Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors , 2017, Nature Genetics.

[14]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[15]  Helen E. Parkinson,et al.  The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) , 2016, Nucleic Acids Res..

[16]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[17]  Alexander van Oudenaarden,et al.  Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon , 2016, Proceedings of the National Academy of Sciences.

[18]  Gunnar C. Hansson,et al.  Immunological aspects of intestinal mucus and mucins , 2016, Nature Reviews Immunology.

[19]  K. Maloy,et al.  The Mucosal Immune System and Its Regulation by Autophagy , 2016, Front. Immunol..

[20]  R. Smits,et al.  Guanylin and uroguanylin are produced by mouse intestinal epithelial cells of columnar and secretory lineage , 2016, Histochemistry and Cell Biology.

[21]  Ping Zhou,et al.  Claudin-7 indirectly regulates the integrin/FAK signaling pathway in human colon cancer tissue , 2016, Journal of Human Genetics.

[22]  Søren Brunak,et al.  Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci , 2016, Nature Genetics.

[23]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[24]  Isabelle Cleynen,et al.  Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease , 2015, Inflammatory bowel diseases.

[25]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[26]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[27]  Géraldine Guasch,et al.  Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. , 2015, Trends in molecular medicine.

[28]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[29]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[30]  J. Gilmer,et al.  Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update , 2015, Mediators of inflammation.

[31]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[32]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[33]  Jeroen Krijgsveld,et al.  Ultrasensitive proteome analysis using paramagnetic bead technology , 2014, Molecular systems biology.

[34]  G. Besner,et al.  Heparin-binding epidermal growth factor-like growth factor restores Wnt/β-catenin signaling in intestinal stem cells exposed to ischemia/reperfusion injury. , 2014, Surgery.

[35]  Thomas Wetter,et al.  Gene Expression Profiling of Colorectal Tumors and Normal Mucosa by Microarrays Meta-Analysis Using Prediction Analysis of Microarray, Artificial Neural Network, Classification, and Regression Trees , 2014, Disease markers.

[36]  Xinli Hu,et al.  SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci , 2014, Bioinform..

[37]  David Artis,et al.  Intestinal epithelial cells: regulators of barrier function and immune homeostasis , 2014, Nature Reviews Immunology.

[38]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[39]  Tetsuya Nakamura,et al.  Lineage-Specific Expression of Bestrophin-2 and Bestrophin-4 in Human Intestinal Epithelial Cells , 2013, PloS one.

[40]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[41]  A. Gewirtz,et al.  Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis , 2013, Gut.

[42]  David Haussler,et al.  The UCSC genome browser and associated tools , 2012, Briefings Bioinform..

[43]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[44]  Sharmistha Dey,et al.  Human Epididymis Protein-4 (HE-4): A Novel Cross-Class Protease Inhibitor , 2012, PloS one.

[45]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[46]  Steve D. M. Brown,et al.  The mammalian gene function resource: the international knockout mouse consortium , 2012, Mammalian Genome.

[47]  M. Johansson,et al.  Fast Renewal of the Distal Colonic Mucus Layers by the Surface Goblet Cells as Measured by In Vivo Labeling of Mucin Glycoproteins , 2012, PloS one.

[48]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[49]  M. Kedinger,et al.  Dysregulation of laminins in intestinal inflammation. , 2012, Pathologie-biologie.

[50]  Rodney D. Newberry,et al.  Goblet cells deliver luminal antigen to CD103+ DCs in the small intestine , 2012, Nature.

[51]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[52]  J. Harrow,et al.  A conditional knockout resource for the genome-wide study of mouse gene function , 2011, Nature.

[53]  Andrea Cimarelli,et al.  A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors , 2011, Nature Protocols.

[54]  Tariq Ahmad,et al.  Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 , 2011, Nature Genetics.

[55]  Lena Holm,et al.  Bacteria Penetrate the Inner Mucus Layer before Inflammation in the Dextran Sulfate Colitis Model , 2010, PloS one.

[56]  Gunnar C. Hansson,et al.  The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions , 2010, Proceedings of the National Academy of Sciences.

[57]  L. Hawthorn,et al.  Normal colon epithelium: a dataset for the analysis of gene expression and alternative splicing events in colon disease , 2010, BMC Genomics.

[58]  A. Bradley,et al.  Agouti C57BL/6N embryonic stem cells for mouse genetic resources , 2009, Nature Methods.

[59]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[60]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[61]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[62]  J. Leiper,et al.  The DDAH-ADMA-NOS Pathway , 2005, Therapeutic drug monitoring.

[63]  Patric Stenberg,et al.  Transport of Lipophilic Drug Molecules in a New Mucus-Secreting Cell Culture Model Based on HT29-MTX Cells , 2001, Pharmaceutical Research.

[64]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[65]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[66]  E. Valore,et al.  Broad-spectrum antimicrobial activity of human intestinal defensin 5 , 1997, Infection and immunity.

[67]  W. Falk,et al.  Neutralization of tumour necrosis factor (TNF) but not of IL‐1 reduces inflammation in chronic dextran sulphate sodium‐induced colitis in mice , 1997, Clinical and experimental immunology.

[68]  D Swallow,et al.  Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. , 1993, Journal of cell science.

[69]  M Sato,et al.  Oxygen free radicals and metallothionein. , 1993, Free radical biology & medicine.