Statistical image modeling using distribution of relative phase in the complex wavelet domain

In this paper, the probability density function of relative phase (fRP) is proposed for modeling natural images in the transform domain. We demonstrate that the fRP fits well with the behaviors of relative phase in the complex directional wavelet subband from different natural images. Moreover, a new image feature based on the fRP is proposed for texture image retrieval application. The fRP based feature yields a higher retrieval accuracy compared to the energy features, the relative phase features and the generalized Gaussian density based features (GGD). In addition to the GGD based features, the fRP phase information is also incorporated to further improve the performance.

[1]  K. S. Miller,et al.  Complex Gaussian Processes , 1969 .

[2]  Soontorn Oraintara,et al.  Using Phase and Magnitude Information of the Complex Directional Filter Bank for Texture Image Retrieval , 2007, 2007 IEEE International Conference on Image Processing.

[3]  Soontorn Oraintara,et al.  A Shift-Invariant Multiscale Multidirection Image Decomposition , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[4]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[5]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[6]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[7]  Nick G. Kingsbury,et al.  Determining Multiscale Image Feature Angles from Complex Wavelet Phases , 2005, ICIAR.

[8]  Zhou Wang,et al.  Local Phase Coherence and the Perception of Blur , 2003, NIPS.

[9]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[10]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[11]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[12]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[13]  S. Mallat A wavelet tour of signal processing , 1998 .

[14]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[15]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[16]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[17]  Nick G. Kingsbury,et al.  Coarse-level object recognition using interlevel products of complex wavelets , 2005, IEEE International Conference on Image Processing 2005.

[18]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hervé Chauris,et al.  Uniform Discrete Curvelet Transform , 2010, IEEE Transactions on Signal Processing.

[20]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[21]  Robyn A. Owens,et al.  Feature detection from local energy , 1987, Pattern Recognit. Lett..