The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers

The microstructure and indentation behavior of Ag/Co, Ag/Cu, Ag/Ni, Cu/W and Ni/Ru multilayers were investigated. The results indicate that the deformation characteristic is influenced by grain morphology. The Ag/Co and Ag/Cu with equi-axed grains deform by shear bands, while the Ag/Ni and Cu/W with compressed grains deform homogenously. This difference is interpreted by cooperative grain boundary sliding which can occur only in equi-axed grain materials. For Ni/Ru multilayer, the shear bands may occurs by shear sliding of adjacent columns.

[1]  Y. Estrin,et al.  Enhanced tensile ductility of an ultra-fine-grained aluminum alloy , 2008 .

[2]  K. A. Padmanabhan,et al.  Plastic deformation of nanocrystalline materials , 1997 .

[3]  Christopher A. Schuh,et al.  The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation , 2007 .

[4]  A. Sergueeva,et al.  Cooperative grain boundary sliding in nanocrystalline materials , 2006 .

[5]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .

[6]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[7]  K. T. Ramesh,et al.  Evolution and microstructure of shear bands in nanostructured Fe , 2002 .

[8]  J. Hosson,et al.  Deformation mechanisms in TiN/(Ti,Al)N multilayers under depth-sensing indentation , 2006 .

[9]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[10]  Q. Wei Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses , 2007 .

[11]  F. Zeng,et al.  Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers , 2008 .

[12]  J. Taylor,et al.  A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation , 2004 .

[13]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[14]  F. Zeng,et al.  Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers , 2007 .

[15]  Amit Misra,et al.  Deformation mechanism maps for polycrystalline metallic multiplayers , 1999 .

[16]  Mohan Menon,et al.  Application of deformation instability to microstructural control in multilayer ceramic composites , 2001 .

[17]  Y. Liu,et al.  Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers , 2006 .

[18]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[19]  Ya Gao,et al.  Indentation creep behavior of nano-scale Ag/Co multilayers , 2006 .

[20]  T. Langdon,et al.  Experimental Evidence for Grain‐Boundary Sliding in Ultrafine‐Grained Aluminum Processed by Severe Plastic Deformation , 2006 .

[21]  Christopher A. Schuh,et al.  A nanoindentation study of serrated flow in bulk metallic glasses , 2003 .

[22]  B. Prorok,et al.  Characterization of the strain rate dependent behavior of nanocrystalline gold films , 2008 .

[23]  F. Zeng,et al.  Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers , 2009 .

[24]  K. T. Ramesh,et al.  Grain size dependent shear instabilities in body-centered and face-centered cubic materials , 2008 .

[25]  Peter M. Derlet,et al.  Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation , 2002 .