Self-Organizing Sync in a Robotic Swarm: A Dynamical System View

Self-organized synchronization is a common phenomenon observed in many natural and artificial systems: simple coupling rules at the level of the individual components of the system result in an overall coherent behavior. Owing to these properties, synchronization appears particularly interesting for swarm robotics systems, as it allows robust temporal coordination of the group while minimizing the complexity of the individual controllers. The goal of the experiments presented in this paper is the study of self-organizing synchronization for robots that present an individual periodic behavior. In order to design the robot controllers, we make use of artificial evolution, which proves to be capable of synthesizing minimal synchronization strategies based on the dynamical coupling between robots and environment. The obtained results are analyzed under a dynamical system perspective, which allows us to uncover the evolved mechanisms and to predict the scalability properties of the self-organizing synchronization with respect to varying group size.

[1]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[2]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[3]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[4]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[5]  Chris Melhuish,et al.  An interactive method for controlling group size in multiple mobile robot systems , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[6]  M. K. Tourtellot,et al.  Precedence effects and the evolution of chorusing , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  Stefano Nolfi,et al.  Synchronization and Gait Adaptation in Evolving Hexapod Robots , 2006, SAB.

[8]  Anthony Arak,et al.  Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects, Darryl T. Gwynne, Glenn K. Morris (Eds.). Westview Press, Boulder, Colorado (1983), xvii , 1984 .

[9]  John R. Huguenard,et al.  Thalamic synchrony and dynamic regulation of global forebrain oscillations , 2007, Trends in Neurosciences.

[10]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[11]  Edward Ott,et al.  Theoretical mechanics: Crowd synchrony on the Millennium Bridge , 2005, Nature.

[12]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[13]  Yoshiki Kuramoto,et al.  Phase Dynamics of Weakly Unstable Periodic Structures , 1984 .

[14]  Frank Pasemann,et al.  Synchronization of Internal Neural Rhythms in Multi-Robotic Systems , 2006, Adapt. Behav..

[15]  Rolf Pfeifer,et al.  Sensory - motor coordination: The metaphor and beyond , 1997, Robotics Auton. Syst..

[16]  M. Ryan,et al.  The costs and benefits of frog chorusing behavior , 1981, Behavioral Ecology and Sociobiology.

[17]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[18]  R. McCarley,et al.  Abnormal Neural Synchrony in Schizophrenia , 2003, The Journal of Neuroscience.

[19]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[20]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[21]  Marco Dorigo,et al.  Swarm Robotics: Special Issue Editorial , 2004 .

[22]  Claudia Carello,et al.  DYNAMICAL PATTERNS IN CLAPPING BEHAVIOR , 1996 .

[23]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[24]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[25]  G. Schöner Timing, Clocks, and Dynamical Systems , 2002, Brain and Cognition.

[26]  R. Beer Dynamical approaches to cognitive science , 2000, Trends in Cognitive Sciences.

[27]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[28]  Randall D. Beer,et al.  A Dynamical Systems Perspective on Agent-Environment Interaction , 1995, Artif. Intell..

[29]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[30]  Manfred Hartbauer,et al.  A novel distributed swarm control strategy based on coupled signal oscillators. , 2007, Bioinspiration & biomimetics.

[31]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[32]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[33]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[34]  Marco Dorigo,et al.  Cooperation through self-assembling in multi-robot systems , 2005 .

[35]  Simon Parsons,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines by Stefano Nolfi and Dario Floreano, MIT Press, 320 pp., $28.00, ISBN 0-262-14070-5 , 2004, Knowledge engineering review (Print).

[36]  M. Rosenblum,et al.  Chapter 9 Phase synchronization: From theory to data analysis , 2001 .

[37]  Frank Pasemann,et al.  The Emergence of Communication by Evolving Dynamical Systems , 2006, SAB.

[38]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[39]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[40]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[41]  E. Thelen,et al.  The dynamics of embodiment: A field theory of infant perseverative reaching , 2001, Behavioral and Brain Sciences.

[42]  Inman Harvey,et al.  Evolutionary Robotics: A New Scientific Tool for Studying Cognition , 2005, Artificial Life.

[43]  G. Schöner Neural Systems and Behavior: Dynamical Systems Approaches , 2001 .

[44]  Marco Dorigo,et al.  Evolution, Self-organization and Swarm Robotics , 2008, Swarm Intelligence.

[45]  Heidi M. Rockwood,et al.  Huygens's clocks , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  John W. Clark,et al.  Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation , 1997, Biological Cybernetics.

[47]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[48]  T. Sejnowski,et al.  Network Oscillations: Emerging Computational Principles , 2006, The Journal of Neuroscience.

[49]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[50]  Luca Maria Gambardella,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Swarm-Bot: A New Distributed Robotic Concept , 2022 .

[51]  Drew H. Abney,et al.  Journal of Experimental Psychology : Human Perception and Performance Influence of Musical Groove on Postural Sway , 2015 .

[52]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[53]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[54]  J. Kurths,et al.  Phase synchronization: from theory to data analysis , 2003 .

[55]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[56]  David H. Bailey,et al.  Algorithms and applications , 1988 .

[57]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[58]  H Henk Nijmeijer,et al.  Synchronization of Mechanical Systems , 2003 .

[59]  Chris Melhuish,et al.  Convoying: using chorusing to form travelling groups of minimal agents , 1999, Robotics Auton. Syst..

[60]  B. Merker Synchronous Chorusing and Human Origins , 2000 .

[61]  Neville Passmore,et al.  Synchronized courtship in fiddler crabs , 1998, Nature.

[62]  Johanna Mappes,et al.  Adaptive significance of synchronous chorusing in an acoustically signalling wolf spider , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[64]  Jürgen Kurths,et al.  Phase Synchronization in Regular and Chaotic Systems , 2000, Int. J. Bifurc. Chaos.