Improved deterministic distributed matching via rounding

We present improved deterministic distributed algorithms for a number of well-studied matching problems, which are simpler, faster, more accurate, and/or more general than their known counterparts. The common denominator of these results is a deterministic distributed rounding method for certain linear programs, which is the first such rounding method, to our knowledge. A sampling of our end results is as follows: An \(O\mathopen {}\left( \log ^2 \Delta \cdot \log n\right) \mathclose {}\)-round deterministic distributed algorithm for computing a maximal matching, in n-node graphs with maximum degree \(\Delta \). This is the first improvement in about 20 years over the celebrated \(O(\log ^4 n)\)-round algorithm of Hanckowiak, Karonski, and Panconesi [SODA’98, PODC’99]. A deterministic distributed algorithm for computing a \((2+\varepsilon )\)-approximation of maximum matching in \(O\mathopen {}\left( \log ^2 \Delta \cdot \log \frac{1}{\varepsilon } + \log ^ * n\right) \mathclose {}\) rounds. This is exponentially faster than the classic \(O(\Delta +\log ^* n)\)-round 2-approximation of Panconesi and Rizzi [DIST’01]. With some modifications, the algorithm can also find an almost maximal matching which leaves only an \(\varepsilon \)-fraction of the edges on unmatched nodes. An \(O\mathopen {}\left( \log ^2 \Delta \cdot \log \frac{1}{\varepsilon } \cdot \log _{1+\varepsilon } W + \log ^ * n\right) \mathclose {}\)-round deterministic distributed algorithm for computing a \((2+\varepsilon )\)-approximation of a maximum weighted matching, and also for the more general problem of maximum weighted b-matching. Here, W denotes the maximum normalized weight. These improve over the \(O\mathopen {}\left( \log ^4 n \cdot \log _{1+\varepsilon } W\right) \mathclose {}\)-round \((6+\varepsilon )\)-approximation algorithm of Panconesi and Sozio [DIST’10].

[1]  Christos Koufogiannakis,et al.  Distributed Fractional Packing and Maximum Weighted b-Matching via Tail-Recursive Duality , 2009, DISC.

[2]  Andrzej Czygrinow,et al.  A Fast Distributed Algorithm for Approximating the Maximum Matching , 2004, ESA.

[3]  Andrzej Czygrinow,et al.  Distributed algorithm for approximating the maximum matching , 2004, Discret. Appl. Math..

[4]  Noga Alon,et al.  Space-efficient local computation algorithms , 2011, SODA.

[5]  Alessandro Panconesi,et al.  On the distributed complexity of computing maximal matchings , 1997, SODA '98.

[6]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[7]  Manuela Fischer Improved deterministic distributed matching via rounding , 2018, Distributed Computing.

[8]  Nathan Linial,et al.  Distributive graph algorithms Global solutions from local data , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[9]  Tsvi Kopelowitz,et al.  An Exponential Separation between Randomized and Deterministic Complexity in the LOCAL Model , 2019, SIAM J. Comput..

[10]  Roger Wattenhofer,et al.  Local Computation , 2010, J. ACM.

[11]  Andrzej Czygrinow,et al.  Distributed Algorithm for Better Approximation of the Maximum Matching , 2003, COCOON.

[12]  Peter Sanders,et al.  A simpler linear time 2/3-epsilon approximation for maximum weight matching , 2004, Inf. Process. Lett..

[13]  Alessandro Panconesi,et al.  Fast primal-dual distributed algorithms for scheduling and matching problems , 2010, Distributed Computing.

[14]  Mika Göös,et al.  Linear-in-delta lower bounds in the LOCAL model , 2014, PODC '14.

[15]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[16]  Henry Martyn Mulder,et al.  Julius Petersen's theory of regular graphs , 1992, Discret. Math..

[17]  PettieSeth,et al.  The Locality of Distributed Symmetry Breaking , 2016 .

[18]  Alessandro Panconesi,et al.  Some simple distributed algorithms for sparse networks , 2001, Distributed Computing.

[19]  Amos Israeli,et al.  An Improved Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..

[20]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[21]  Alon Itai,et al.  A Fast and Simple Randomized Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..

[22]  Fabian Kuhn,et al.  On the complexity of local distributed graph problems , 2016, STOC.

[23]  Mohsen Ghaffari,et al.  An Improved Distributed Algorithm for Maximal Independent Set , 2015, SODA.

[24]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[25]  Jukka Suomela,et al.  Distributed maximal matching: greedy is optimal , 2012, PODC '12.

[26]  Hsin-Hao Su,et al.  Distributed (∆+1)-coloring in sublogarithmic rounds , 2016, STOC.

[27]  Dana Ron,et al.  On Approximating the Minimum Vertex Cover in Sublinear Time and the Connection to Distributed Algorithms , 2007, Electron. Colloquium Comput. Complex..

[28]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[29]  Roger Wattenhofer,et al.  Distributed weighted matching , 2003 .

[30]  Jukka Suomela Distributed algorithms for edge dominating sets , 2010, PODC '10.

[31]  Boaz Patt-Shamir,et al.  Distributed approximate matching , 2007, PODC '07.

[32]  Ronitt Rubinfeld,et al.  Fast Local Computation Algorithms , 2011, ICS.

[33]  Hsin-Hao Su,et al.  Distributed Degree Splitting, Edge Coloring, and Orientations , 2016, SODA.

[34]  Dana Ron,et al.  Deterministic Stateless Centralized Local Algorithms for Bounded Degree Graphs , 2014, ESA.

[35]  Alessandro Panconesi,et al.  A faster distributed algorithm for computing maximal matchings deterministically , 1999, PODC '99.