Sequential grammars and automata with valences

We discuss the model of valence grammars, a simple extension of context-free grammars. We show closure properties of context-free valence languages over arbitrary monoids. Chomsky and Greibach normal form theorems and an iteration lemma for context-free valence grammars over the groups Zk are proved. The generative power of different control monoids is investigated. In particular, we show that context-free valence grammars over finite monoids or commutative monoids have the same power as valence grammars over finite groups or commutative groups, respectively.

[1]  Hendrik Jan Hoogeboom Context-Free Valence Grammars - Revisited , 2001, Developments in Language Theory.

[2]  Gheorghe Paun VALENCES: Increasing the power of grammars, tranducers grammar systems , 1992, Bull. EATCS.

[3]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[4]  I. H. Sudborough The complexity of the membership problem for some extensions of context-free languagest† , 1977 .

[5]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[6]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[7]  Gheorghe Paun,et al.  Words, Semigroups, and Transductions , 2001 .

[8]  Henning Fernau,et al.  Valence Grammars with Target Sets , 2001, Words, Semigroups, and Transductions.

[9]  Victor Mitrana Valence grammars on a free generated group , 1992, Bull. EATCS.

[10]  J. Rotman An Introduction to the Theory of Groups , 1965 .

[11]  M. W. Shields An Introduction to Automata Theory , 1988 .

[12]  Victor Mitrana,et al.  The Accepting Power of Finite Automata over Groups , 1997, New Trends in Formal Languages.

[13]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[14]  Henning Fernau,et al.  Regulations by Valences , 1997, MFCS.

[15]  Oscar H. Ibarra,et al.  Finite Automata with Multiplication , 1976, Theor. Comput. Sci..

[16]  Henning Fernau,et al.  Valences in Lindenmayer Systems , 2001, Fundam. Informaticae.

[17]  Gheorghe Păun,et al.  Mathematical Aspects of Natural and Formal Languages , 1994, World scientific series in computer science.

[18]  Rudolf Freund,et al.  Hybrid modes in cooperating distributed grammar systems: internal versus external hybridization , 2001, Theor. Comput. Sci..

[19]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[20]  Sheila A. Greibach Remarks on Blind and Partially Blind One-Way Multicounter Machines , 1978, Theor. Comput. Sci..

[21]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[22]  Arto Salomaa,et al.  Probabilistic and Weighted Grammars , 1969, Inf. Control..

[23]  Sorina Vicolov-Dumitrescu,et al.  Grammars, Grammar Systems, and GSM Mappings with Valences , 1994, Mathematical Aspects of Natural and Formal Languages.

[24]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[25]  Gheorghe Paun,et al.  Grammars with Controlled Derivations , 1997, Handbook of Formal Languages.

[26]  Henning Fernau,et al.  Valuated and Valence Grammars: An Algebraic View , 2001, Developments in Language Theory.

[27]  Rudolf Freund,et al.  Hybrid modes in cooperating distributed grammar systems: combining the t-mode with the modes le k and =k , 2003, Theor. Comput. Sci..