Multiple-user quantum information theory for optical communication channels

Thesis Supervisor: Jeffrey H. Shapiro Title: Julius A. Stratton Professor of Electrical Engineering

[1]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[2]  R. Muller Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation , 2003 .

[3]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[4]  Icrp Chapters 4–6 , 2009 .

[5]  M. E. Barnett Detection of Optical and Infrared Radiation , 1979 .

[6]  広田 修,et al.  Quantum information, statistics, probability , 2004 .

[7]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[8]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[9]  A. Wehrl General properties of entropy , 1978 .

[10]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[11]  J. Gordon,et al.  Quantum Effects in Communications Systems , 1962, Proceedings of the IRE.

[12]  J. Shapiro,et al.  Capacity of Bosonic Communications , 2004 .

[13]  Seth Lloyd,et al.  Minimum Rényi and Wehrl entropies at the output of bosonic channels , 2004 .

[14]  Antonia Maria Tulino,et al.  Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof , 2006, IEEE Transactions on Information Theory.

[15]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[16]  Masahide Sasaki,et al.  Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit , 2003 .

[17]  A. Holevo Coding Theorems for Quantum Channels , 1999 .

[18]  O. Hirota,et al.  Quantum Information, Statistics, Probability , 2004 .

[19]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[20]  John R. Pierce,et al.  The capacity of the photon counting channel , 1981, IEEE Trans. Inf. Theory.

[21]  Ralf R. Müller,et al.  Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation , 2003, IEEE Trans. Signal Process..

[22]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[23]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[24]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  Mark H. A. Davis,et al.  Capacity and cutoff rate for Poisson-type channels , 1980, IEEE Trans. Inf. Theory.

[27]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[28]  Saikat Guha,et al.  Ultimate channel capacity of free-space optical communications (Invited) , 2005 .

[29]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[30]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[31]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[32]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[33]  M. Katzman,et al.  Optical communication systems , 1985, Proceedings of the IEEE.

[34]  Graeme Smith Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.

[35]  Lizhong Zheng,et al.  Multilevel Broadcast Networks , 2007, 2007 IEEE International Symposium on Information Theory.

[36]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[37]  Nick Doran,et al.  Optical Communication Systems , 1984 .

[38]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[39]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.

[40]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[41]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[42]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[43]  Jeffrey H. Shapiro,et al.  Multiple-access Bosonic communications , 2005, SPIE International Symposium on Fluctuations and Noise.

[44]  A. S. Holevo,et al.  On Shor’s Channel Extension and Constrained Channels , 2004 .

[45]  Brent J. Yen,et al.  Multiple-user quantum optical communication , 2004 .

[46]  Saikat Guha,et al.  Classical capacity of the free-space quantum-optical channel , 2004 .

[47]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[48]  Shlomo Shamai,et al.  Bounds on the capacity of a spectrally constrained Poisson channel , 1993, IEEE Trans. Inf. Theory.

[49]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[50]  J. Shapiro,et al.  Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.

[51]  K. Ball,et al.  Solution of Shannon's problem on the monotonicity of entropy , 2004 .

[52]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[53]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[54]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[55]  Robert G. Gallager,et al.  Capacity and coding for degraded broadcast channels , 1974 .

[56]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[57]  Saikat Guha,et al.  Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.

[58]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[59]  Alfonso Martinez,et al.  Spectral efficiency of optical direct detection , 2007 .

[60]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.

[61]  A. D'Amico,et al.  Detection of optical and infrared radiation , 1980 .

[62]  Baris I. Erkmen,et al.  Phase-sensitive light: coherence theory and applications to optical imaging , 2008 .

[63]  Andrea J. Goldsmith,et al.  On the duality of Gaussian multiple-access and broadcast channels , 2002, IEEE Transactions on Information Theory.

[64]  Sergio Verdú,et al.  A simple proof of the entropy-power inequality , 2006, IEEE Transactions on Information Theory.

[65]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[66]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[67]  Mokshay M. Madiman,et al.  Generalized Entropy Power Inequalities and Monotonicity Properties of Information , 2006, IEEE Transactions on Information Theory.

[68]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[69]  A. Sridharan Broadcast Channels , 2022 .

[70]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[71]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[72]  M. D. Gosson,et al.  Symplectic Geometry and Quantum Mechanics , 2006 .

[73]  Seth Lloyd,et al.  Additivity properties of a Gaussian channel , 2004, quant-ph/0403075.

[74]  D. Slepian Analytic Solution of Two Apodization Problems , 1965 .

[75]  S. Lloyd,et al.  Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.

[76]  Seth Lloyd,et al.  Classical capacity of free-space optical communication , 2004, Quantum Inf. Comput..

[77]  Masahide Sasaki,et al.  Exceeding the classical capacity limit in a quantum optical channel. , 2003, Physical review letters.

[78]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[79]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.