Consistent cross-modal identification of cortical neurons with coupled autoencoders

Consistent identification of neurons in different experimental modalities is a key problem in neuroscience. While methods to perform multimodal measurements in the same set of single neurons have become available, parsing complex relationships across different modalities to uncover neuronal identity is a growing challenge. Here, we present an optimization framework to learn coordinated representations of multimodal data, and apply it to a large multimodal dataset profiling mouse cortical interneurons. Our approach reveals strong alignment between transcriptomic and electrophysiological characterizations, enables accurate cross-modal data prediction, and identifies cell types that are consistent across modalities. Highlights Coupled autoencoders for multimodal assignment, Analysis of Patch-seq data consisting of more than 3000 cells

[1]  Wei Wang,et al.  A Comprehensive Survey on Cross-modal Retrieval , 2016, ArXiv.

[2]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[3]  Fabian J. Theis,et al.  Statistical single cell multi-omics integration , 2018 .

[4]  Jeff A. Bilmes,et al.  Deep Canonical Correlation Analysis , 2013, ICML.

[5]  Hongkui Zeng,et al.  A coupled autoencoder approach for multi-modal analysis of cell types , 2019, NeurIPS.

[6]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[7]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[8]  Trygve E Bakken,et al.  Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.

[9]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[10]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[11]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[12]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[13]  Jeff A. Bilmes,et al.  On Deep Multi-View Representation Learning , 2015, ICML.

[14]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[15]  Kenneth D Harris,et al.  Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics , 2017, bioRxiv.

[16]  Klaus Nordhausen,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .

[17]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.

[18]  Saumil S. Patel,et al.  Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas , 2019, Nature Communications.

[19]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[20]  Trygve E Bakken,et al.  Single-cell transcriptomic evidence for dense intracortical neuropeptide networks , 2019, bioRxiv.

[21]  Philipp Berens,et al.  Neuronal Diversity In The Retina , 2017 .

[22]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[23]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[24]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[25]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[26]  Brian R. Lee,et al.  Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.

[27]  Philipp Berens,et al.  Sparse reduced-rank regression for exploratory visualization of multimodal data sets , 2018, bioRxiv.

[28]  Ruifan Li,et al.  Cross-modal Retrieval with Correspondence Autoencoder , 2014, ACM Multimedia.

[29]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[30]  Ming Yang,et al.  A Survey of Multi-View Representation Learning , 2019, IEEE Transactions on Knowledge and Data Engineering.

[31]  Louis-Philippe Morency,et al.  Multimodal Machine Learning: A Survey and Taxonomy , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Hongkui Zeng,et al.  Phenotypic variation within and across transcriptomic cell types in mouse motor cortex , 2020, bioRxiv.

[33]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[34]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.