Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae)
暂无分享,去创建一个
Pavel Nemec | Hynek Burda | Leo Peichl | L. Peichl | H. Burda | P. Němec
[1] P. Ahnelt,et al. A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor , 2002, Brain Research.
[2] Á. Szél,et al. Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus , 1994, Cell and Tissue Research.
[3] J. Terkel,et al. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. , 2001, The Journal of experimental biology.
[4] Á. Szél,et al. Photoreceptor distribution in the retinas of subprimate mammals. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[5] M. Gordijn,et al. The eye of the african mole‐rat Cryptomys anselli: to see or not to see? , 2003, The European journal of neuroscience.
[6] G. Heth,et al. African Mole-rats. Ecology and Eusociality , 2000, Animal Behaviour.
[7] L. Peichl,et al. Photoreceptor types and distributions in the retinae of insectivores , 2000, Visual Neuroscience.
[8] H. Oelschläger,et al. Visual System Labeled by c-Fos Immunohistochemistry after Light Exposure in the ‘Blind’ Subterranean Zambian Mole-Rat (Cryptomys anselli) , 2000, Brain, Behavior and Evolution.
[9] C. G. Faulkes. Mosaic Evolution of Subterranean Mammals — Regression, Progression and Global Convergence , 2000, Heredity.
[10] H. Cooper,et al. Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae) , 2003, Brain Research.
[11] E. Nevo,et al. Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.
[12] G. H. Jacobs,et al. Regional variations in the relative sensitivity to UV light in the mouse retina , 1995, Visual Neuroscience.
[13] L. Peichl,et al. Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.
[14] Á. Szél,et al. Monoclonal antibody-recognizing cone visual pigment. , 1986, Experimental eye research.
[15] C. Lerea,et al. α transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina , 1989, Neuron.
[16] R. Wiltschko,et al. Magnetic compass orientation in the subterranean rodentCryptomys hottentotus (Bathyergidae) , 1990, Experientia.
[17] L. Peichl,et al. Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.
[18] Leo Peichl,et al. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals* , 2001, The European journal of neuroscience.
[19] U. Grünert,et al. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii) , 1999, Visual Neuroscience.
[20] Joseph Terkel,et al. Seeing and not seeing , 2002, Current Opinion in Neurobiology.
[21] S. Poopalasundaram,et al. Vision in the ultraviolet , 2001, Cellular and Molecular Life Sciences CMLS.
[22] M. Lavail,et al. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.
[23] E. Nevo,et al. Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi , 1993, The Journal of comparative neurology.
[24] P. Sherman,et al. Life Underground: The Biology of Subterranean Rodents , 2001 .
[25] Á. Szél,et al. Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.
[26] G H Jacobs,et al. The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.
[27] E. Nevo,et al. The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. , 2002, Investigative ophthalmology & visual science.
[28] Helga Kolb,et al. The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.
[29] L. Peichl,et al. Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology. , 2003, Investigative ophthalmology & visual science.
[30] E. Nevo,et al. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.
[31] G. H. Jacobs,et al. Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.
[32] R. Masland,et al. The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.
[33] V. Bruns,et al. Sensory adaptations in subterranean mammals. , 1990, Progress in clinical and biological research.
[34] G. H. Jacobs,et al. Visual adaptations in a diurnal rodent, Octodon degus , 2003, Journal of Comparative Physiology A.
[35] Á. Szél,et al. Binding sites of photoreceptor-specific antibodies COS-1, OS-2 and AO. , 1993, Current eye research.
[36] R. Molday,et al. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. , 1986, Experimental eye research.
[37] J. Bowmaker,et al. A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.
[38] L. Peichl,et al. Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[39] E. Nevo. Adaptive Convergence and Divergence of Subterranean Mammals , 1979 .
[40] Á. Szél,et al. Identification of the blue‐sensitive cones in the mammalian retina by anti‐visual pigment antibody , 1988, The Journal of comparative neurology.
[41] M. Antoch,et al. The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.
[42] D. Copenhagen,et al. Visual Deprivation Alters Development of Synaptic Function in Inner Retina after Eye Opening , 2001, Neuron.
[43] D. Copenhagen,et al. Visual Stimulation Is Required for Refinement of ON and OFF Pathways in Postnatal Retina , 2003, Neuron.
[44] J. Pettigrew,et al. Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.
[45] P Artal,et al. Retinal image quality in the rodent eye , 1998, Visual Neuroscience.
[46] J. W. Atkinson. The Scientific Attitude.Frederick Grinnell , 1993 .
[47] Á. Szél,et al. Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse. , 2002, Investigative ophthalmology & visual science.
[48] G. H. Jacobs,et al. Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.
[49] H. Oelschläger,et al. Neuroanatomy of Magnetoreception: The Superior Colliculus Involved in Magnetic Orientation in a Mammal , 2001, Science.
[50] G. H. Jacobs. THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.
[51] J. Feldman,et al. Comparative Retinal Pigment Epithelium and Photoreceptor Ultrastructure in Nocturnal and Fossorial Rodents: The Eastern Woodrat, Neotoma floridana, and the Plains Pocket Gopher, Geomys bursarius , 1984 .
[52] Donald J. Zack,et al. A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.
[53] J. Nathans,et al. A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas , 1994, Visual Neuroscience.
[54] E. Nevo,et al. Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.
[55] Jose Angel Bolea,et al. Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[56] Eviatar Nevo,et al. Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.
[57] E. Nevo,et al. The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax , 2002, Neuroreport.
[58] R. Foster,et al. Light detection in a 'blind' mammal , 1998, Nature Neuroscience.
[59] Á. Szél,et al. Two cone types of rat retina detected by anti-visual pigment antibodies. , 1992, Experimental eye research.
[60] W. Wiltschko,et al. A Magnetic Polarity Compass for Direction Finding in a Subterranean Mammal , 1997, Naturwissenschaften.
[61] J. T. Erichsen,et al. Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.
[62] E. Pugh,et al. UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.
[63] M. Herbin,et al. Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax) , 1995, Visual Neuroscience.