Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae)

We have determined the presence of spectral cone types, and the population densities of cones and rods, in subterranean mole‐rats of the rodent family Bathyergidae, for which light and vision seems of little importance. Most mammals have two spectral cone types, a majority of middle‐ to long‐wave‐sensitive (L‐) cones, and a minority of short‐wave‐sensitive (S‐)cones. We were interested to see whether the subterranean bathyergids show the same pattern. In three species, Ansell's mole‐rat Cryptomys anselli, the giant mole‐rat Cryptomys mechowi and the naked mole‐rat Heterocephalus glaber, spectral cone types and rods were assessed immunocytochemically with opsin‐specific antibodies. All three species had rod‐dominated retinae but possessed significant cone populations. A quantitative assessment in C. anselli and C. mechowi revealed surprisingly low photoreceptor densities of 100 000–150 000/mm2, and high cone proportions, ≈ 10% (8000–15 000/mm2). In all three species, the vast majority of the cones were strongly S‐opsin‐immunoreactive; L‐opsin immunoreactivity was much fainter. In C. anselli, ≈ 20% of the cones showed exclusive S‐opsin label, ≈ 10% exclusive L‐opsin label and ≈ 70% strong S‐opsin and faint L‐opsin double label (potential dual‐pigment cones). This is the first observation in any mammal of an S‐opsin dominance and low levels of L‐opsin across the entire retina. It contrasts starkly with the situation in the muroid blind mole‐rat Spalax ehrenbergi, which has been reported to possess L‐opsin but no S‐opsin. Evidently, within rodents an adaptation to subterranean life is compatible with very different spectral cone properties.

[1]  P. Ahnelt,et al.  A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor , 2002, Brain Research.

[2]  Á. Szél,et al.  Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus , 1994, Cell and Tissue Research.

[3]  J. Terkel,et al.  Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. , 2001, The Journal of experimental biology.

[4]  Á. Szél,et al.  Photoreceptor distribution in the retinas of subprimate mammals. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  M. Gordijn,et al.  The eye of the african mole‐rat Cryptomys anselli: to see or not to see? , 2003, The European journal of neuroscience.

[6]  G. Heth,et al.  African Mole-rats. Ecology and Eusociality , 2000, Animal Behaviour.

[7]  L. Peichl,et al.  Photoreceptor types and distributions in the retinae of insectivores , 2000, Visual Neuroscience.

[8]  H. Oelschläger,et al.  Visual System Labeled by c-Fos Immunohistochemistry after Light Exposure in the ‘Blind’ Subterranean Zambian Mole-Rat (Cryptomys anselli) , 2000, Brain, Behavior and Evolution.

[9]  C. G. Faulkes Mosaic Evolution of Subterranean Mammals — Regression, Progression and Global Convergence , 2000, Heredity.

[10]  H. Cooper,et al.  Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae) , 2003, Brain Research.

[11]  E. Nevo,et al.  Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.

[12]  G. H. Jacobs,et al.  Regional variations in the relative sensitivity to UV light in the mouse retina , 1995, Visual Neuroscience.

[13]  L. Peichl,et al.  Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.

[14]  Á. Szél,et al.  Monoclonal antibody-recognizing cone visual pigment. , 1986, Experimental eye research.

[15]  C. Lerea,et al.  α transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina , 1989, Neuron.

[16]  R. Wiltschko,et al.  Magnetic compass orientation in the subterranean rodentCryptomys hottentotus (Bathyergidae) , 1990, Experientia.

[17]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[18]  Leo Peichl,et al.  For whales and seals the ocean is not blue: a visual pigment loss in marine mammals* , 2001, The European journal of neuroscience.

[19]  U. Grünert,et al.  Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii) , 1999, Visual Neuroscience.

[20]  Joseph Terkel,et al.  Seeing and not seeing , 2002, Current Opinion in Neurobiology.

[21]  S. Poopalasundaram,et al.  Vision in the ultraviolet , 2001, Cellular and Molecular Life Sciences CMLS.

[22]  M. Lavail,et al.  Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.

[23]  E. Nevo,et al.  Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi , 1993, The Journal of comparative neurology.

[24]  P. Sherman,et al.  Life Underground: The Biology of Subterranean Rodents , 2001 .

[25]  Á. Szél,et al.  Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.

[26]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[27]  E. Nevo,et al.  The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. , 2002, Investigative ophthalmology & visual science.

[28]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[29]  L. Peichl,et al.  Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology. , 2003, Investigative ophthalmology & visual science.

[30]  E. Nevo,et al.  The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.

[31]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[32]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[33]  V. Bruns,et al.  Sensory adaptations in subterranean mammals. , 1990, Progress in clinical and biological research.

[34]  G. H. Jacobs,et al.  Visual adaptations in a diurnal rodent, Octodon degus , 2003, Journal of Comparative Physiology A.

[35]  Á. Szél,et al.  Binding sites of photoreceptor-specific antibodies COS-1, OS-2 and AO. , 1993, Current eye research.

[36]  R. Molday,et al.  Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. , 1986, Experimental eye research.

[37]  J. Bowmaker,et al.  A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.

[38]  L. Peichl,et al.  Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  E. Nevo Adaptive Convergence and Divergence of Subterranean Mammals , 1979 .

[40]  Á. Szél,et al.  Identification of the blue‐sensitive cones in the mammalian retina by anti‐visual pigment antibody , 1988, The Journal of comparative neurology.

[41]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[42]  D. Copenhagen,et al.  Visual Deprivation Alters Development of Synaptic Function in Inner Retina after Eye Opening , 2001, Neuron.

[43]  D. Copenhagen,et al.  Visual Stimulation Is Required for Refinement of ON and OFF Pathways in Postnatal Retina , 2003, Neuron.

[44]  J. Pettigrew,et al.  Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.

[45]  P Artal,et al.  Retinal image quality in the rodent eye , 1998, Visual Neuroscience.

[46]  J. W. Atkinson The Scientific Attitude.Frederick Grinnell , 1993 .

[47]  Á. Szél,et al.  Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse. , 2002, Investigative ophthalmology & visual science.

[48]  G. H. Jacobs,et al.  Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.

[49]  H. Oelschläger,et al.  Neuroanatomy of Magnetoreception: The Superior Colliculus Involved in Magnetic Orientation in a Mammal , 2001, Science.

[50]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[51]  J. Feldman,et al.  Comparative Retinal Pigment Epithelium and Photoreceptor Ultrastructure in Nocturnal and Fossorial Rodents: The Eastern Woodrat, Neotoma floridana, and the Plains Pocket Gopher, Geomys bursarius , 1984 .

[52]  Donald J. Zack,et al.  A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.

[53]  J. Nathans,et al.  A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas , 1994, Visual Neuroscience.

[54]  E. Nevo,et al.  Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.

[55]  Jose Angel Bolea,et al.  Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[56]  Eviatar Nevo,et al.  Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.

[57]  E. Nevo,et al.  The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax , 2002, Neuroreport.

[58]  R. Foster,et al.  Light detection in a 'blind' mammal , 1998, Nature Neuroscience.

[59]  Á. Szél,et al.  Two cone types of rat retina detected by anti-visual pigment antibodies. , 1992, Experimental eye research.

[60]  W. Wiltschko,et al.  A Magnetic Polarity Compass for Direction Finding in a Subterranean Mammal , 1997, Naturwissenschaften.

[61]  J. T. Erichsen,et al.  Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.

[62]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[63]  M. Herbin,et al.  Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax) , 1995, Visual Neuroscience.