Approximation schemes for knapsack problems with shelf divisions
暂无分享,去创建一个
[1] Eduardo C. Xavier,et al. A one-dimensional bin packing problem with shelf divisions , 2005, Electron. Notes Discret. Math..
[2] G. S. Lueker,et al. Bin packing can be solved within 1 + ε in linear time , 1981 .
[3] Nelson Maculan,et al. The one dimensional Compartmentalised Knapsack Problem: A case study , 2007, Eur. J. Oper. Res..
[4] Tami Tamir,et al. Polynominal time approximation schemes for class-constrained packing problem , 2000, APPROX.
[5] A. Frieze,et al. Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .
[6] Fabiano do Prado Marques,et al. The constrained compartmentalised knapsack problem , 2007, Comput. Oper. Res..
[7] Hans Kellerer,et al. Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..
[8] Sanjeev Khanna,et al. A PTAS for the multiple knapsack problem , 2000, SODA '00.
[9] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.
[10] J. Soeiro Ferreira,et al. A two-phase roll cutting problem , 1990 .
[11] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.