Detailed analysis for 6Li+40Ca elastic scattering using different potentials

The available experimental differential cross-section data for the 6Li+40C nuclear system in the energy range of 20–240 MeV have been reanalyzed using the framework of the phenomenological optical model (OM), the semi-microscopic cluster folding optical model (CFOM), and the microscopic cluster folding model (CFM) motivated by the well-known cluster structure of 6Li. Reasonable fits to the experimental data have been obtained using OM, CFOM, and CFM over the entire energy range considered in this study. For the real cluster folding potential, the extracted average renormalization factors from CFM and CFOM calculations are 0.46 ± 0.14 and 0.56 ± 0.05, respectively. Due to the well-developed cluster structure of 6Li and the effect of its breakup on other reaction channels, the strength of the real cluster folding potentials was required to be reduced by ∼44%–54% in order to describe the experimental data.

[1]  S. Hamada,et al.  Cluster folding optical potential analysis for 6Li+28Si elastic scattering , 2021, Revista Mexicana de Física.

[2]  M. Anwar Semimicroscopic analysis of Li6 elastic scattering at 40 MeV/nucleon , 2020, Physical Review C.

[3]  B. Alshahrani,et al.  Analysis of 6Li+16O elastic scattering using different potentials , 2020 .

[4]  S. Hamada,et al.  Peculiarities of 6Li +12C elastic scattering , 2019 .

[5]  A. N. Antonov,et al.  Microscopic analysis of quasielastic scattering and breakup reactions of the neutron-rich nuclei Be12,14 , 2019, Physical Review C.

[6]  Liyuan Hu,et al.  The breakup coupling effects on the rainbow scattering of 6Li at 35 AMeV , 2019, Nuclear Physics.

[7]  A. Ibraheem,et al.  Investigation of the 6Li + 40Ca elastic scattering using different folding models , 2018, The European Physical Journal A.

[8]  Yinlu Han,et al.  6 Li global phenomenological optical model potential , 2018 .

[9]  E. Strano,et al.  Breakup of $^6$Li + $p$ at near-barrier energies and the effect on elastic scattering , 2017 .

[10]  A. N. Antonov,et al.  Microscopic analysis of 10,11Be elastic scattering on protons and 12C and breakup processes of 11Be within the 10Be+n cluster model , 2015, 1502.06425.

[11]  D. Pang Effects of relativistic kinematics in heavy ion elastic scattering , 2014 .

[12]  I. Boztosun,et al.  PARAMETRIZED FORM OF THE DYNAMIC POLARIZATION POTENTIAL FOR THE 6He + 208Pb INTERACTION , 2013 .

[13]  Pang Dan-yang Effects of relativistic kinematics in heavy ion elastic scattering , 2013, 1308.5472.

[14]  D. Pang,et al.  Toward a systematic nucleus-nucleus potential for peripheral collisions , 2013 .

[15]  A. K. Basak,et al.  Non-monotonic potentials for 6Li elastic scattering at 88 MeV , 2013 .

[16]  A. N. Antonov,et al.  Microscopic analysis of 11 Li elastic scattering on protons and breakup processes within 9Li+2n cluster model , 2013, 1309.3382.

[17]  A. N. Antonov,et al.  Study of $^{6}$He+$^{12}$C Elastic Scattering Using a Microscopic Optical Potential , 2010, 1007.4123.

[18]  D. Youngblood,et al.  Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential , 2010 .

[19]  A. N. Antonov,et al.  Calculations of He 8 + p elastic cross sections using a microscopic optical potential , 2009, 0908.1008.

[20]  Z. Mahmoud,et al.  Folding Model Analysis of 6 He+ 120 Sn Elastic Scattering , 2008 .

[21]  N. Keeley,et al.  Breakup dynamic polarization potential for He6+Pb208 at 27MeV , 2004 .

[22]  M. A. Hassanain,et al.  Density-independent folding analysis of the 6,7 Li elastic scattering at intermediate energies , 2000 .

[23]  C. Gagliardi,et al.  Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/nucleon , 1999, nucl-ex/9908022.

[24]  Warner,et al.  Unique 6Li-nucleus optical potentials from elastic scattering of 210 MeV 6Li ions by 28Si, 40Ca, 90Zr, and 208Pb. , 1989, Physical review. C, Nuclear physics.

[25]  Ian J. Thompson,et al.  Coupled reaction channels calculations in nuclear physics , 1988 .

[26]  H. J. Gils,et al.  Optical model studies of 6Li elastic scattering at 156 MeV , 1982 .

[27]  K. Kemper,et al.  Description of large angle /sup 6/Li + /sup 40/Ca scattering from 26 to 34 MeV using double-folded and. cap alpha. +d cluster potentials , 1982 .

[28]  W. Jacobs,et al.  Optical potential for 6 Li elastic scattering at 99 MeV , 1981 .

[29]  D. C. Hensley,et al.  Elastic and inelastic scattering of 88 MeV 6Li ions , 1981 .

[30]  H. W. Fulbright,et al.  Variation of ground-state α-particle strengths for sd- and fp-shell nuclei , 1980 .

[31]  H. Bohn,et al.  Back-angle anomalies in /sup 6/Li scattering from /sup 40/Ca and /sup 44/Ca , 1977 .

[32]  M. J. Nadworny,et al.  28- and 34-MeV Li-6 and Li-7 elastic scattering on nuclei with 40 <= A <= 91 , 1977 .

[33]  L. Bimbot,et al.  Study of microscopic wave functions of nuclear levels through inelastic scattering of 166 MeV α-particles , 1973 .

[34]  W. Myers Droplet model nuclear density distributions and single-particle potential wells , 1970 .

[35]  K. Bethge,et al.  Elastic scattering of lithium nuclei , 1969 .