Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing.

Plasmonic nanocavities consisting of the concentric arrangement of a disk and a ring sustain both subradiant and superradiant dipolar plasmon modes with large associated field enhancements and high refractive index sensitivities. In structures with broken symmetry, additionally a highly tunable Fano interference feature appears, which can be explained with a simple analytical harmonic oscillator model. The spectral tunability of these resonances from the visible to the mid-infrared is investigated, highlighting a potential for applications in surface enhanced spectroscopies.

[1]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[2]  G. Veronis,et al.  Guided subwavelength plasmonic mode supported by a slot in a thin metal film. , 2005, Optics letters.

[3]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[4]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[5]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[6]  P. Nussenzveig,et al.  Classical analog of electromagnetically induced transparency , 2001, quant-ph/0107061.

[7]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[8]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[9]  J. Hafner,et al.  Symmetry breaking in individual plasmonic nanoparticles. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[11]  Harald Giessen,et al.  Plasmonic Building Blocks for Magnetic Molecules in Three‐Dimensional Optical Metamaterials , 2008 .

[12]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[13]  G. Steinmeyer,et al.  Femtosecond light transmission and subradiant damping in plasmonic crystals. , 2005, Physical review letters.

[14]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[15]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[16]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[17]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.

[20]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[21]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[22]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[23]  M. T. Burnett,et al.  Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities , 2007 .

[24]  P. Brevet,et al.  Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. , 2008, Physical review letters.

[25]  Harry A. Atwater The promise of plasmonics. , 2007 .

[26]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[27]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[28]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[30]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[31]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[32]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[33]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[34]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.