Cosmological implications of baryon acoustic oscillation measurements

We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-alpha forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H-0 = 67.3 +/- 1.1 km s(-1) Mpc(-1), with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Lambda CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Lambda), our BAO + SN + CMB combination yields matter density Omega(m) = 0.301 +/- 0.008 and curvature Omega(k) = -0.003 +/- 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Lambda CDM values at approximate to 1 sigma. While the overall chi(2) of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H-0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Sigma m(nu) < 0.56 eV (95% confidence), improving to Sigma m(nu) < 0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Lambda CDM model that allows extra relativistic species, our data combination yields N-eff = 3.43 +/- 0.26; while the LyaF BAO data prefer higher N-eff when excluding galaxy BAO, the galaxy BAO alone favor N-eff approximate to 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates.

Adam D. Myers | Ashley J. Ross | Lado Samushia | Cullan Howlett | Angela Burden | Robert C. Nichol | Hong Guo | David J. Schlegel | Shirley Ho | Gong-Bo Zhao | Jean-Paul Kneib | J. Richard Gott | Michael Blomqvist | Rita Tojeiro | Jian Ge | James E. Gunn | Michael Blanton | Michael A. Strauss | Robert H. Lupton | Nathalie Palanque-Delabrouille | Joel R. Brownstein | Dmitry Bizyaev | Chia-Hsun Chuang | Kyle S. Dawson | Adam S. Bolton | Francisco Prada | Isabelle Paris | Andreu Font-Ribera | Elena Malanushenko | Viktor Malanushenko | Pasquier Noterdaeme | Matthew M. Pieri | Benjamin A. Weaver | Cameron K. McBride | Erin Sheldon | Johan Comparat | Graziano Rossi | 'Eric Aubourg | Donald P. Schneider | Florian Beutler | Patrick Petitjean | Matteo Viel | Idit Zehavi | Jean-Christophe Hamilton | David A. Wake | Claudia Maraston | Audrey Simmons | Vaishali Bhardwaj | W. M. Wood-Vasey | Stephen Bailey | David Kirkby | Julian E. Bautista | Klaus Honscheid | Hee-Jong Seo | Will J. Percival | Jo Bovy | Daniel J. Eisenstein | Daniel Margala | A. Myers | Daniel Thomas | R. Nichol | J. Brinkmann | D. Schneider | W. Percival | J. Kneib | 'Eric Aubourg | S. Bailey | J. Bautista | F. Beutler | V. Bhardwaj | D. Bizyaev | M. Blanton | M. Blomqvist | A. Bolton | J. Bovy | J. Brownstein | A. Burden | N. Busca | Chia-Hsun Chuang | J. Comparat | R. Croft | A. Cuesta | K. Dawson | T. Delubac | D. Eisenstein | A. Font-Ribera | J. Ge | S. G. A. Gontcho | J. Gunn | Hong Guo | S. Ho | K. Honscheid | D. Kirkby | F. Kitaura | J. M. Goff | K. Lee | D. Long | R. Lupton | E. Malanushenko | V. Malanushenko | M. Manera | C. Maraston | D. Margala | C. McBride | P. Noterdaeme | S. E. Nuza | M. Olmstead | D. Oravetz | N. Padmanabhan | N. Palanque-Delabrouille | K. Pan | I. Pâris | M. Pellejero-Ibañez | P. Petitjean | M. Pieri | F. Prada | B. Reid | J. Rich | N. Roe | A. Ross | N. Ross | G. Rossi | J. Rubino-Mart'in | L. Samushia | Ariel G. S'anchez | D. Schlegel | C. Sc'occola | H. Seo | A. Slosar | M. Strauss | J. Tinker | R. Tojeiro | J. Vázquez | M. Viel | D. Wake | B. Weaver | D. Weinberg | W. Wood-Vasey | C. Yèche | I. Zehavi | Gong-Bo Zhao | E. Aubourg | H. Brewington | W. Carithers | J. Gott | J. Hamilton | E. Sheldon | A. Simmons | M. V. Magaña | J. Guy | R. Skibba | J. Rubiño-Martín | C. Howlett | J. Miralda-Escud'e | C. Scóccola | Anvze Slosar | Christophe Yeche | Julien Guy | Dan Long | Kaike Pan | Marcos Pellejero-Ibanez | Daniel Thomas | Jose Alberto Vazquez | David H. Weinberg | Antonio J. Cuesta | Nikhil Padmanabhan | Daniel Oravetz | Timoth'ee Delubac | Nicol'as G. Busca | Khee-Gan Lee | J. Brinkmann | William Carithers | Satya Gontcho A Gontcho | J.-M. Le Goff | Jordi Miralda-Escud'e | Matthew D. Olmstead | Nicholas P. Ross | Howard Brewington | Marc Manera | Beth Reid | Natalie A. Roe | Ramin A. Skibba | Jeremy L. Tinker | R. Santos | Francisco S. Kitaura | Mariana Vargas Magana | Claudia G. Sc'occola | Sebasti'an E. Nuza | Jose Alberto Rubino-Mart'in | Ricardo Tanaus'u G'enova Santos | J. Guy | D. Kirkby | C. Chuang | M. Strauss | D. Schneider | D. Thomas | G. Zhao | J. Gunn | M. Pellejero-Ibáñez | C. Yéche | S. Gontcho | D. Wake | A. Sánchez | Jian Ge | R. Nichol | David H. Weinberg | D. A. Wake | Daniel J. Eisenstein | F. Prada | D. Schneider | J. Rubiño-Martín | Stephen Bailey | J. L. Goff | Hong Guo | Jordi Miralda-Escudé | P. Petitjean | N. Roe | Ricardo Tanausú Génova Santos | E. Slosar | H. Seo | J. Hamilton | Daniel Eisenstein | D. H. Weinberg | Jian Ge | D. Eisenstein

[1]  P. Strevens Iii , 1985, Middle Egyptian.

[2]  W. Marsden I and J , 2012 .

[3]  小幡 行雄,et al.  Soviet Physics JETP , 1956 .

[4]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[8]  R. Beyer,et al.  Soviet Physics—JETP , 1960 .

[9]  Physical Review Letters 63 , 1989 .

[10]  D. Nanopoulos,et al.  The new cosmology : conference on strings and cosmology, College Station, Texas 14 - 17 March 2004 : the Mitchell symposium on observational cosmology, College Station, Texas 12 - 16 April 2004 , 2004 .

[11]  L. M. A a , 2004 .

[12]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[13]  October I Physical Review Letters , 2022 .

[14]  V. Suriyanon,et al.  IN R , 2006 .