Optically based Manufacturing with Polymer Particles

We present a new single-laser optical trapping technique for the exact manipulation and durable assembly of transparent polymer microparticles. This technique comprises the trapping of microparticles and the assembly by using a laser-driven thermal process for the joining of the particles. The thermal energy necessary for the systematic joining is applied partly by global heating of the processing chamber and by absorption of the electromagnetic radiation of the laser tweezer. The main advantage of this contact free joining technology is to use the same laser for the optical trapping, positioning and the durable assembly. The generated joints are stable and cannot be broken up with optical forces. In summary, a new micromanufacturing process based on an optical machining process is reported with promising applications in the MEMS and photonics area.

[1]  David G. Grier,et al.  Nanofabrication with holographic optical tweezers , 2002 .

[2]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[3]  M Montes-Usategui,et al.  Design strategies for optimizing holographic optical tweezers set-ups , 2007, physics/0701037.

[4]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[5]  Hiroshi Masuhara,et al.  Laser manipulation and assembling of polymer latex particles in solution , 1993 .

[6]  Richard A. Flynn,et al.  Optical Manipulation of Objects and Biological Cells in Microfluidic Devices , 2003 .

[7]  Ashkin,et al.  Observation of radiation-pressure trapping of particles by alternating light beams. , 1985, Physical review letters.

[8]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[9]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[10]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[11]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[12]  Hiroshi Masuhara,et al.  Multibeam laser manipulation and fixation of microparticles , 1992 .

[13]  S W Hell,et al.  Heating by absorption in the focus of an objective lens. , 1998, Optics letters.

[14]  David W. M. Marr,et al.  Fabrication of linear colloidal structures for microfluidic applications , 2002 .

[15]  Hiroshi Masuhara,et al.  Photothermal fixation of laser-trapped polymer microparticles on polymer substrates , 1999 .

[16]  Yoshio Tanaka,et al.  Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. , 2008, Optics express.

[17]  Linhong Deng,et al.  Universal physical responses to stretch in the living cell , 2007, Nature.

[18]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[19]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[20]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[21]  Yael Roichman,et al.  Holographic assembly of quasicrystalline photonic heterostructures. , 2005, Optics express.