A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization

S U M M A R Y Non-linear inverse problems in the geosciences often involve probabilistic sampling of multimodal density functions or global optimization and sometimes both. Efficient algorithmic tools for carrying out sampling or optimization in challenging cases are of major interest. Here results are presented of some numerical experiments with a technique, known as Parallel Tempering, which originated in the field of computational statistics but is finding increasing numbers of applications in fields ranging from Chemical Physics to Astronomy. To date, experience in use of Parallel Tempering within earth sciences problems is very limited. In this paper, we describe Parallel Tempering and compare it to related methods of Simulated Annealing and Simulated Tempering for optimization and sampling, respectively. A key feature of Parallel Tempering is that it satisfies the detailed balance condition required for convergence of Markov chain Monte Carlo (McMC) algorithms while improving the efficiency of probabilistic sampling. Numerical results are presented on use of Parallel Tempering for trans-dimensional inversion of synthetic seismic receiver functions and also the simultaneous fitting of multiple receiver functions using global optimization. These suggest that its use can significantly accelerate sampling algorithms and improve exploration of parameter space in optimization. Parallel Tempering is a meta-algorithm which may be used together with many existing McMC sampling and direct search optimization techniques. It’s generality and demonstrated performance suggests that there is significant potential for applications to both sampling and optimization problems in the geosciences.

[1]  Jan Dettmer,et al.  Trans-dimensional joint inversion of seabed scattering and reflection data. , 2013, The Journal of the Acoustical Society of America.

[2]  David A. Kofke,et al.  ARTICLES On the acceptance probability of replica-exchange Monte Carlo trials , 2002 .

[3]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[4]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[5]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[6]  James L. Beck,et al.  Bayesian inversion for finite fault earthquake source models I—theory and algorithm , 2013 .

[7]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[8]  Yan Bai,et al.  Divide and Conquer: A Mixture-Based Approach to Regional Adaptation for MCMC , 2009 .

[9]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[10]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[11]  D. Kofke,et al.  Selection of temperature intervals for parallel-tempering simulations. , 2005, The Journal of chemical physics.

[12]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[13]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[14]  C. Bina,et al.  Free Energy Minimization by Simulated Annealing with Applications to Lithospheric Slabs and Mantle Plumes , 1998 .

[15]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[16]  A. Curtis,et al.  Optimal elicitation of probabilistic information from experts , 2004, Geological Society, London, Special Publications.

[17]  Charles J. Geyer,et al.  Importance Sampling, Simulated Tempering, and Umbrella Sampling , 2011 .

[18]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[19]  N. Cornish,et al.  Gravitational wave astronomy: needle in a haystack , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  A. Mira On Metropolis-Hastings algorithms with delayed rejection , 2001 .

[21]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[22]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[23]  C. Pain,et al.  Inference of past climate from borehole temperature data using Bayesian reversible jump Markov chain Monte Carlo , 2007 .

[24]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[25]  S. Dosso,et al.  Data Uncertainty Estimation in Matched-Field Geoacoustic Inversion , 2006, IEEE Journal of Oceanic Engineering.

[26]  M. Sambridge,et al.  Monte Carlo analysis of inverse problems , 2002 .

[27]  A. Gorin,et al.  Accelerated simulated tempering , 2004 .

[28]  D. Kofke Comment on "The incomplete beta function law for parallel tempering sampling of classical canonical systems" [J. Chem. Phys. 120, 4119 (2004)]. , 2004, The Journal of chemical physics.

[29]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[30]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[31]  Stan E. Dosso,et al.  Probabilistic two dimensional joint water-column and seabed inversion , 2013 .

[32]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[33]  Gareth O. Roberts,et al.  Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo , 2011, Stat. Comput..

[34]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[35]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[36]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[37]  Malcolm Sambridge,et al.  Parallel tempering for strongly nonlinear geoacoustic inversion. , 2012, The Journal of the Acoustical Society of America.

[38]  Malcolm Sambridge,et al.  Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure , 1996 .

[39]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[40]  G. Randall,et al.  On the nonuniqueness of receiver function inversions , 1990 .

[41]  M. Sambridge,et al.  Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models , 2011 .

[42]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[43]  Jan Dettmer,et al.  Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations. , 2013, The Journal of the Acoustical Society of America.

[44]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[45]  M. Sambridge,et al.  Transdimensional tomography with unknown data noise , 2012 .

[46]  Hrvoje Tkalcic,et al.  A new global PKP data set to study Earth's core and deep mantle , 2006 .

[47]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[48]  C. Predescu,et al.  The incomplete beta function law for parallel tempering sampling of classical canonical systems. , 2003, The Journal of chemical physics.

[49]  Jan Dettmer,et al.  Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains. , 2012, The Journal of the Acoustical Society of America.

[50]  Sally Rosenthal,et al.  Parallel computing and Monte Carlo algorithms , 1999 .

[51]  Daniel H. Rothman,et al.  Automatic estimation of large residual statics corrections , 1986 .

[52]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[53]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[54]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[55]  Michael Nilges,et al.  Replica-exchange Monte Carlo scheme for bayesian data analysis. , 2005, Physical review letters.

[56]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[57]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[58]  M. Sambridge,et al.  Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems , 2009 .