Non-parametric Spectral Model for Shape Retrieval

Non-rigid 3D shape retrieval is an active and important research topic in content based object retrieval. This problem is often cast in terms of the shapes intrinsic geometry due to its invariance to a wide range of non-rigid deformations. In this paper, we devise a novel generative model for shape retrieval based on the spectral representation of the Laplacian of a mesh. Contrary to common use, our approach avoids the ubiquitous correspondence problem by transforming the eigenvectors of the Laplacian to a density in the spectral-embedding space which is estimated nonparametrically. We show that this model can efficiently be learned from a set of 3D meshes. The experimental results on the SHREC'14 benchmark show the effectiveness of the approach compared to the state-of-the-art.

[1]  Leonidas J. Guibas,et al.  Fine-grained semi-supervised labeling of large shape collections , 2013, ACM Trans. Graph..

[2]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[3]  Andrea Fusiello,et al.  The bag of words approach for retrieval and categorization of 3D objects , 2010, The Visual Computer.

[4]  Edwin R. Hancock,et al.  Alignment using Spectral Clusters , 2002, BMVC.

[5]  Edwin R. Hancock,et al.  3D Shape Classification Using Commute Time , 2012, SSPR/SPR.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[8]  A. Ben Hamza,et al.  Intrinsic spatial pyramid matching for deformable 3D shape retrieval , 2013, International Journal of Multimedia Information Retrieval.

[9]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[10]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[11]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[12]  Andrea Giachetti,et al.  Radial Symmetry Detection and Shape Characterization with the Multiscale Area Projection Transform , 2012, Comput. Graph. Forum.

[13]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[15]  Alexander M. Bronstein,et al.  Supervised learning of bag‐of‐features shape descriptors using sparse coding , 2014, Comput. Graph. Forum.

[16]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[18]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[19]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[20]  Hao Zhang,et al.  A spectral approach to shape-based retrieval of articulated 3D models , 2007, Comput. Aided Des..

[21]  Yizhou Yu,et al.  Fast nonrigid 3D retrieval using modal space transform , 2013, ICMR.

[22]  Saturnino Maldonado-Bascón,et al.  Evaluating 3D spatial pyramids for classifying 3D shapes , 2013, Comput. Graph..

[23]  Tsuhan Chen,et al.  Indexing and retrieval of 3D models aided by active learning , 2001, MULTIMEDIA '01.

[24]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[25]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  Richard C. Wilson,et al.  Spectral Generative Models for Graphs , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[27]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[28]  Indriyati Atmosukarto,et al.  3D model retrieval with morphing-based geometric and topological feature maps , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[29]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).