Expanding Lorentz and spectrum corrections to large volumes of reciprocal space for single-crystal time-of-flight neutron diffraction

Extraction of structure factor amplitudes from total scattering (Bragg + diffuse diffraction) data for local structure modeling remains a significant challenge, especially when considering time-of-flight measurements. Individual intensity contributions carry different statistical weights, with associated distinctive effects on data summation and correction. A comprehensive, statistically improved data analysis approach to correct and scale the complete volume of reciprocal space data in one step is described.

[1]  L. Gerward,et al.  Relations between integrated intensities in crystal diffraction methods for X-rays and neutrons , 1975 .

[2]  H. Birkedal,et al.  Stacking disorder: the hexagonal polymorph of tris(bicyclo[2.1.1]hexeno)benzene and related examples , 2005 .

[3]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[4]  W. Howells,et al.  The analysis of liquid structure data from time-of-flight neutron diffractometry , 1989 .

[5]  J. Mayers The use of vanadium as a scattering standard for pulsed source neutron spectrometers , 1984 .

[6]  Matthew J. Frost,et al.  CrystalPlan: an experiment-planning tool for crystallography , 2011 .

[7]  M. Haase,et al.  Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline β-NaGdF4: Yb3+, Er3+ , 2005 .

[8]  S. W. Lovesey,et al.  Theory of neutron scattering from condensed matter , 1984 .

[9]  Z. Ye,et al.  Single-crystal neutron diffuse scattering and Monte Carlo study of the relaxor ferroelectric PbZn 1/3 Nb 2/3 O 3 (PZN) , 2005 .

[10]  R. Riedel,et al.  Design and performance of a large area neutron sensitive anger camera , 2015 .

[11]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[12]  J. Burns Crystal Structure of Hexagonal Sodium Neodymium Fluoride and Related Compounds , 1965 .

[13]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[14]  K. Krämer,et al.  Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. , 2006, Angewandte Chemie.

[15]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[16]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[17]  D. Keen,et al.  Diffuse Neutron Scattering from Crystalline Materials , 2001 .

[18]  P. F. Peterson,et al.  Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space , 2014 .

[19]  T. Welberry,et al.  The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Hans-Beat Bürgi,et al.  Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[23]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[24]  A. Freud Diffuse X Ray Scattering And Models Of Disorder , 2016 .

[25]  Yongsheng Liu,et al.  Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. , 2013, Angewandte Chemie.

[26]  B. N. Rao,et al.  Local structural disorder and its influence on the average global structure and polar properties in Na 0.5 Bi 0.5 TiO 3 , 2013 .

[27]  P. F. Peterson,et al.  Scientific Review: New Software for Neutron Scattering Data Visualization , 2004 .

[28]  V. Lynch,et al.  Analyzing diffuse scattering with supercomputers , 2013 .

[29]  W. Moore Methods of Experimental Physics. , 1960 .