Language Models for Contextual Error Detection and Correction

The problem of identifying and correcting confusibles, i.e. context-sensitive spelling errors, in text is typically tackled using specifically trained machine learning classifiers. For each different set of confusibles, a specific classifier is trained and tuned. In this research, we investigate a more generic approach to context-sensitive confusible correction. Instead of using specific classifiers, we use one generic classifier based on a language model. This measures the likelihood of sentences with different possible solutions of a confusible in place. The advantage of this approach is that all confusible sets are handled by a single model. Preliminary results show that the performance of the generic classifier approach is only slightly worse that that of the specific classifier approach.

[1]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[2]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[3]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[4]  David Yarowsky,et al.  DECISION LISTS FOR LEXICAL AMBIGUITY RESOLUTION: Application to Accent Restoration in Spanish and French , 1994, ACL.

[5]  Andrew R. Golding,et al.  A Bayesian Hybrid Method for Context-sensitive Spelling Correction , 1996, VLC@ACL.

[6]  Stanley F. Chen,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[7]  Walter Daelemans,et al.  Memory-Based Learning: Using Similarity for Smoothing , 1997, ACL.

[8]  Eric Brill,et al.  Automatic Rule Acquisition for Spelling Correction , 1997, ICML.

[9]  Walter Daelemans,et al.  TiMBL: Tilburg Memory-Based Learner, version 2.0, Reference guide , 1998 .

[10]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[11]  Zhifang Sui,et al.  An information-based method for selecting feature types for word prediction , 1999, EUROSPEECH.

[12]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[13]  Dan Roth,et al.  A Classification Approach to Word Prediction , 2000, ANLP.

[14]  Dominiek Sandra,et al.  Zo helder en toch zoveel fouten! Wat leren we uit psycholinguïstisch onderzoek naar werkwoordfouten bij ervaren spellers? , 2001 .

[15]  David M. W. Powers,et al.  Large scale experiments on correction of confused words , 2001, Proceedings 24th Australian Computer Science Conference. ACSC 2001.

[16]  Michele Banko,et al.  Scaling to Very Very Large Corpora for Natural Language Disambiguation , 2001, ACL.

[17]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[18]  Thomas L. Griffiths,et al.  Integrating Topics and Syntax , 2004, NIPS.

[19]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[20]  Dan Roth,et al.  A Winnow-Based Approach to Context-Sensitive Spelling Correction , 1998, Machine Learning.

[21]  Walter Daelemans,et al.  IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms , 1997, Artificial Intelligence Review.

[22]  Colin de la Higuera,et al.  A bibliographical study of grammatical inference , 2005, Pattern Recognit..

[23]  Antal van den Bosch Wrapped progressive sampling search for optimizing learning algorithm parameters , 2005 .

[24]  Antal van den Bosch Scalable classification-based word prediction and confusible correction , 2005 .

[25]  Walter Daelemans,et al.  Dat gebeurd mei niet: computationele modellen voor verwarbare homofonen , 2007 .