On the spatial partitioning of urban transportation networks

[1]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[2]  I. Prigogine,et al.  A Two-Fluid Approach to Town Traffic , 1979, Science.

[3]  H. Edelsbrunner,et al.  Efficient algorithms for agglomerative hierarchical clustering methods , 1984 .

[4]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[5]  Kerner,et al.  Experimental properties of complexity in traffic flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[8]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[9]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[10]  Yaw-Ling Lin,et al.  Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular sequence analysis , 2002, J. Comput. Syst. Sci..

[11]  Carlos F. Daganzo,et al.  Structure of the Transition Zone Behind Freeway Queues , 2000, Transp. Sci..

[12]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[14]  N. Geroliminis,et al.  Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings - eScholarship , 2007 .

[15]  Carlos F. Daganzo,et al.  Urban Gridlock: Macroscopic Modeling and Mitigation Approaches , 2007 .

[16]  Nikolas Geroliminis,et al.  Macroscopic modeling of traffic in cities , 2007 .

[17]  Beatrice Gralton,et al.  Washington DC - USA , 2008 .

[18]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[19]  David Carmel,et al.  Enhancing cluster labeling using wikipedia , 2009, SIGIR.

[20]  Christine Buisson,et al.  Exploring the Impact of Homogeneity of Traffic Measurements on the Existence of Macroscopic Fundamental Diagrams , 2009 .

[21]  D. Helbing,et al.  Theoretical vs. empirical classification and prediction of congested traffic states , 2009, 0903.0929.

[22]  Dirk Helbing,et al.  The spatial variability of vehicle densities as determinant of urban network capacity , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Vikash V. Gayah,et al.  Clockwise Hysteresis Loops in the Macroscopic Fundamental Diagram , 2010 .

[24]  Nikolas Geroliminis,et al.  Exploring spatial characteristics of urban transportation networks , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[25]  C. Daganzo,et al.  Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability , 2011 .

[26]  Nikolaos Geroliminis,et al.  Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic , 2011 .

[27]  Nikolaos Geroliminis,et al.  The effect of variability of urban systems characteristics in the network capacity , 2012 .

[28]  Markos Papageorgiou,et al.  Exploiting the fundamental diagram of urban networks for feedback-based gating , 2012 .

[29]  Nikolaos Geroliminis,et al.  On the stability of traffic perimeter control in two-region urban cities , 2012 .

[30]  Nikolas Geroliminis,et al.  Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach , 2013, IEEE Transactions on Intelligent Transportation Systems.

[31]  Transportation Research Part B , .