Successful leveraging of image processing and machine learning in seismic structural interpretation: A review

As a process that identifies geologic structures of interest such as faults, salt domes, or elements of petroleum systems in general, seismic structural interpretation depends heavily on the domain knowledge and experience of interpreters as well as visual cues of geologic structures, such as texture and geometry. With the dramatic increase in size of seismic data acquired for hydrocarbon exploration, structural interpretation has become more time consuming and labor intensive. By treating seismic data as images rather than signal traces, researchers have been able to utilize advanced image-processing and machine-learning techniques to assist interpretation directly. In this paper, we mainly focus on the interpretation of two important geologic structures, faults and salt domes, and summarize interpretation workflows based on typical or advanced image-processing and machine-learning algorithms. In recent years, increasing computational power and the massive amount of available data have led to the rise of deep learning. Deep-learning models that simulate the human brain's biological neural networks can achieve state-of-the-art accuracy and even exceed human-level performance on numerous applications. The convolutional neural network — a form of deep-learning model that is effective in analyzing visual imagery — has been applied in fault and salt dome interpretation. At the end of this review, we provide insight and discussion on the future of structural interpretation.

[1]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[2]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[3]  T. Pavlidis A thinning algorithm for discrete binary images , 1980 .

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[6]  Michael S. Bahorich,et al.  3-D Seismic Discontinuity For Faults And Stratigraphic Features: The Coherence Cube , 1995 .

[7]  R. Lynn Kirlin,et al.  3-D seismic attributes using a semblance‐based coherency algorithm , 1998 .

[8]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[9]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[10]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  A. Roberts Curvature attributes and their application to 3D interpreted horizons , 2001 .

[12]  Paul Meldahl,et al.  Identifying faults and gas chimneys using multiattributes and neural networks , 2001 .

[13]  Richard Uden,et al.  Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps , 2002 .

[14]  Trygve Randen,et al.  Automatic Fault Extraction Using Artificial Ants , 2002 .

[15]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  Biondo Biondi,et al.  Image segmentation for tracking salt boundaries , 2004 .

[18]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[19]  Kristofer M. Tingdahl,et al.  Semi‐automatic detection of faults in 3D seismic data , 2005 .

[20]  Jean-Laurent Mallet,et al.  Automatic Faults Extraction Using Double Hough Transform , 2005 .

[21]  Michael Spann,et al.  Fault surface detection in 3-D seismic data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  P. Anno,et al.  Spectral decomposition of seismic data with continuous-wavelet transform , 2005 .

[23]  C.J.H. Mann,et al.  Geophysical Applications of Artificial Neural Networks and Fuzzy Logic , 2006 .

[24]  Israel Cohen,et al.  Detection and extraction of fault surfaces in 3D seismic data , 2006 .

[25]  Zhou Jing,et al.  Detecting boundary of salt dome in seismic data with edge‐detection technique , 2007 .

[26]  Robert G. Clapp,et al.  Application of image segmentation to tracking 3D salt boundaries , 2007 .

[27]  Robert G. Clapp,et al.  Seismic image segmentation with multiple attributes , 2009 .

[28]  Robert G. Clapp,et al.  Speeding up seismic image segmentation , 2010 .

[29]  A. A. Aqrawi,et al.  Detecting Salt Domes Using a Dip Guided 3D Sobel Seismic Attribute , 2011 .

[30]  Anne H. Schistad Solberg,et al.  3D Segmentation of Salt Using Texture Attributes , 2012 .

[31]  Xinbo Gao,et al.  Stable Orthogonal Local Discriminant Embedding for Linear Dimensionality Reduction , 2013, IEEE Transactions on Image Processing.

[32]  Anne H. Schistad Solberg,et al.  Texture attributes for detection of salt , 2013 .

[33]  Haibin Di,et al.  Multi-Attributes and Neural Network-Based Fault Detection in 3D Seismic Interpretation , 2013 .

[34]  Dave Hale,et al.  Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images , 2013 .

[35]  Tamir Hegazy,et al.  COHERENSi: A new full-reference IQA index using error spectrum chaos , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[36]  Chiyuan Zhang,et al.  Machine-learning Based Automated Fault Detection in Seismic Traces , 2014 .

[37]  Fangyu Li,et al.  Coherence attribute at different spectral scales , 2014 .

[38]  Zhen Wang,et al.  Automatic fault surface detection by using 3D Hough transform , 2014 .

[39]  Qian Zhang,et al.  Study on Seismic Fortification Level of Electrical Equipment , 2014 .

[40]  Xiao-Dong Zheng,et al.  A seismic coherency method using spectral amplitudes , 2015, Applied Geophysics.

[41]  Ricardo Vilalta,et al.  Supervised Learning to Detect Salt Body , 2015 .

[42]  Tao Yang,et al.  A fast algorithm for coherency estimation in seismic data based on information divergence , 2015 .

[43]  Ghassan AlRegib,et al.  Noise-robust detection and tracking of salt domes in postmigrated volumes using texture, tensors, and subspace learning , 2015, 1812.11109.

[44]  Amin Asjad,et al.  A new approach for salt dome detection using a 3D multidirectional edge detector , 2015, Applied Geophysics.

[45]  Vikram Jayaram,et al.  A comparison of classification techniques for seismic facies recognition , 2015 .

[46]  Mohamed A. Deriche,et al.  Salt-Dome Detection Using a Codebook-Based Learning Model , 2016, IEEE Geoscience and Remote Sensing Letters.

[47]  Haibin Di,et al.  3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization , 2017, Pure and Applied Geophysics.

[48]  Xinming Wu Methods to compute salt likelihoods and extract salt boundaries from 3D seismic images , 2016 .

[49]  Muhammad Shafiq,et al.  Interpreter-assisted Tracking of Subsurface Structures within Migrated Seismic Volumes Using Active Contour , 2016 .

[50]  Dengliang Gao SEISMIC ATTRIBUTE-AIDED FAULT DETECTION IN PETROLEUM INDUSTRY: A REVIEW , 2016 .

[51]  Yazeed Alaudah,et al.  A Generalized Tensor-based Coherence Attribute , 2016 .

[52]  Kurt J. Marfurt,et al.  Understanding the seismic disorder attribute and its applications , 2016 .

[53]  Xinming Wu Methods to compute salt likelihoods and extract salt boundaries from 3D seismic images , 2016 .

[54]  Ghassan Al-Regib,et al.  Tensor-based subspace learning for tracking salt-dome boundaries constrained by seismic attributes , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[55]  G. AlRegib,et al.  A texture-based interpretation workflow with application to delineating salt domes , 2017 .

[56]  Anne H. Schistad Solberg,et al.  Salt Classification Using Deep Learning , 2017 .

[57]  Ghassan AlRegib,et al.  A directional coherence attribute for seismic interpretation , 2017 .

[58]  Haibin Di,et al.  Seismic Multi-attribute Classification for Salt Boundary Detection - A Comparison , 2017 .

[59]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Shusen Wang,et al.  Towards real-time geologic feature detection from seismic measurements using a randomized machine-learning algorithm , 2017 .

[61]  Haibin Di,et al.  Seismic-fault detection based on multiattribute support vector machine analysis , 2017 .

[62]  Xishuang Dong,et al.  A scalable deep learning platform for identifying geologic features from seismic attributes , 2017 .

[63]  Haibin Di,et al.  Multi-attribute K-means Cluster Analysis for Salt Boundary Detection , 2017 .

[64]  Tomaso Poggio,et al.  Automated fault detection without seismic processing , 2017 .

[65]  Ghassan Al-Regib,et al.  Interactive Fault Extraction in 3-D Seismic Data Using the Hough Transform and Tracking Vectors , 2017, IEEE Transactions on Computational Imaging.

[66]  Ghassan AlRegib,et al.  Subsurface Structure Analysis Using Computational Interpretation and Learning: A Visual Signal Processing Perspective , 2018, IEEE Signal Processing Magazine.

[67]  Ghassan AlRegib,et al.  Seismic Fault Detection from Post-Stack Amplitude by Convolutional Neural Networks , 2018, 80th EAGE Conference and Exhibition 2018.

[68]  Ghassan Al-Regib,et al.  The role of visual saliency in the automation of seismic interpretation , 2018, ArXiv.