New algorithms for maximization of concave functions with box constraints

Ce travail considere le probleme de maximiser une fonction concave differentielle soumise a des restrictions de bornes sur les variables et dont le gradient satisfait aux conditions de Lipschitz, en utilisant une strategie de restrictions actives. Un modele d'algorithme general y est propose pour le probleme. L'algorithme contient un procede permettant de decider, avant d'atteindre un point stationnaire d'une face, quand cette face du polytope doit etre abandonnee, de facon a exclure un voisinage de grandeur fixe autour du point en question. Des conditions faibles sont necessaires pour abandonner une face qui, probablement, ne sera jamais revisitee

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[3]  Per Lötstedt Solving the minimal least squares problem subject to bounds on the variables , 1984 .

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  Å. Björck A direct method for sparse least squares problems with lower and upper bounds , 1988 .

[6]  Ana Friedlander,et al.  On the numerical solution of bound constrained optimization problems , 1989 .

[7]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[8]  Ana Friedlander,et al.  Optimization with staircase structure: An application to generation scheduling , 1990, Comput. Oper. Res..

[9]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[10]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[11]  J. Tolle,et al.  A sparse sequential quadratic programming algorithm , 1989 .

[12]  R. Glowinski,et al.  Sur des méthodes d'optimisation par relaxation , 1973 .

[13]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[14]  A. Goldstein Convex programming in Hilbert space , 1964 .

[15]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[16]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[17]  José Mario Martínez,et al.  A Numerically stable reduced-gradient type algorithm for solving large-scale linearly constrained minimization problems , 1991, Comput. Oper. Res..

[18]  D. O’Leary A generalized conjugate gradient algorithm for solving a class of quadratic programming problems , 1977 .

[19]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[20]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[21]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..