Local bounded cochain projections

We construct projections from HΛk(Ω), the space of differential k forms on Ω which belong to L2(Ω) and whose exterior derivative also belongs to L2(Ω), to finite dimensional subspaces of HΛk(Ω) consisting of piecewise polynomial differential forms defined on a simplicial mesh of Ω. Thus, their definition requires less smoothness than assumed for the definition of the canonical interpolants based on the degrees of freedom. Moreover, these projections have the properties that they commute with the exterior derivative and are bounded in the HΛk(Ω) norm independent of the mesh size h. Unlike some other recent work in this direction, the projections are also locally defined in the sense that they are defined by local operators on overlapping macroelements, in the spirit of the Clement interpolant. A double complex structure is introduced as a key tool to carry out the construction.

[1]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[2]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[3]  Alan Demlow Localized pointwise error estimates for mixed finite element methods , 2004, Math. Comput..

[4]  D. Boffi,et al.  Mixed finite elements, compatibility conditions, and applications : lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July 1, 2006 , 2008 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Leszek Demkowicz,et al.  H1, H(curl) and H(div)-conforming projection-based interpolation in three dimensionsQuasi-optimal p-interpolation estimates , 2005 .

[7]  Alan Demlow,et al.  A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex , 2012, Foundations of Computational Mathematics.

[8]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[9]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[10]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[11]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[12]  Snorre H. Christiansen,et al.  Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension , 2007, Numerische Mathematik.

[13]  H. Whitney Geometric Integration Theory , 1957 .

[14]  Leszek Demkowicz,et al.  Projection-based interpolation and automatic hp-adaptivity for finite element discretizations of elliptic and maxwell problems , 2007 .

[15]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[16]  Leszek Demkowicz,et al.  Optimal error estimate of a projection based interpolation for the p-version approximation in three dimensions , 2005 .

[17]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[18]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[19]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[20]  Douglas N. Arnold,et al.  Geometric decompositions and local bases for spaces of finite element differential forms , 2008, 0806.1255.

[21]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[22]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[23]  Gabriel Caloz,et al.  Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix , 2006 .

[24]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[25]  Leszek F. Demkowicz,et al.  p Interpolation Error Estimates for Edge Finite Elements of Variable Order in Two Dimensions , 2003, SIAM J. Numer. Anal..

[26]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .