Non-commutative extensions of the MacMahon Master Theorem
暂无分享,去创建一个
[1] I. Gel'fand,et al. A theory of noncommutative determinants and characteristic functions of graphs , 1992 .
[2] Y. Manin. Multiparametric quantum deformation of the general linear supergroup , 1989 .
[3] Igor Pak,et al. AN ALGEBRAIC EXTENSION OF THE MACMAHON MASTER THEOREM , 2006 .
[4] M. Lorenz,et al. Koszul algebras and the quantum MacMahon master theorem , 2006, math/0603169.
[5] Michael J. Schlosser,et al. Multidimensional Matrix Inversions and Ar and Dr Basic Hypergeometric Series , 1997 .
[6] Doron Zeilberger,et al. Laguerre Polynomials, Weighted Derangements, and Positivity , 1988, SIAM J. Discret. Math..
[7] R. Berger. Koszulity for Nonquadratic Algebras , 2001 .
[8] Michael J. Schlosser,et al. A new multidimensional matrix inverse with applications to multiple q-series , 1999, Discret. Math..
[9] George E. Andrews. Identities in combinatorics. II. A $q$-analog of the Lagrange inversion theorem , 1975 .
[10] Doron Zeilberger,et al. A combinatorial approach to matrix algebra , 1985, Discret. Math..
[11] The β-extension of the multivariable Lagrange inversion formula , 1991 .
[12] Y. Manin. Some remarks on Koszul algebras and quantum groups , 1987 .
[13] G. Lallement. Semigroups and combinatorial applications , 1979 .
[14] C. Krattenthaler. Operator methods and Lagrange inversion: a unified approach to Lagrange formulas , 1988 .
[15] I. Goulden,et al. Combinatorial Enumeration , 2004 .
[16] The quantum MacMahon Master Theorem , 2003, Proceedings of the National Academy of Sciences.
[18] A basis for the right quantum algebra and the “1=q” principle , 2006, math/0603463.
[19] A. Kirillov,et al. Introduction to Superanalysis , 1987 .
[20] M. Minoux. Extension of MacMahon's Master Theorem to pre-semi-rings , 2001 .
[21] Dominique Foata,et al. A noncommutative version of the matrix inversion formula , 1979 .
[22] Ira M. Gessel,et al. Applications of q-lagrange inversion to basic hypergeometric series , 1983 .
[23] Pierre Cartier,et al. Problemes combinatoires de commutation et rearrangements , 1969 .
[24] J. Shaw. Combinatory Analysis , 1917, Nature.
[25] Ira M. Gessel,et al. A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .
[26] I. Good. A short proof of MacMahon's ‘Master Theorem’ , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] G. Viennot. Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .