Snapshot ghost diffraction imaging based on spatial averaging

We demonstrate a snap-shot ghost diffraction imaging approach with potential features of simultaneous recovery of amplitude and phase of a complex-valued object from a single-shot recording of the fields at the detectors. The technique utilizes the spatial averaging as an effective replacement of ensemble averaging in the execution of the cross-correlation of intensity fluctuations at the detector plane. Furthermore, the approach adopts the concept of holography in combination with the ghost diffraction scheme for the simultaneous recovery of phase distribution along with the amplitude of the object. The proposed method is expected to find applications in the two- and three-dimensional real-time quantitative imaging, biological microscopy, tomography, and super-resolution imaging, etc.

[1]  Shensheng Han,et al.  Incoherent coincidence imaging and its applicability in X-ray diffraction. , 2004, Physical review letters.

[2]  Jesús Lancis,et al.  Optical encryption based on computational ghost imaging. , 2010, Optics letters.

[3]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[4]  A. Gatti,et al.  High-resolution ghost image and ghost diffraction experiments with thermal light. , 2005, Physical review letters.

[5]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[6]  J. Goodman Introduction to Fourier optics , 1969 .

[7]  A. Gatti,et al.  Differential ghost imaging. , 2010, Physical review letters.

[8]  P. Moreau,et al.  Ghost Imaging Using Optical Correlations , 2018 .

[9]  B. Hoenders Review of a Bewildering Classical–Quantum Phenomenon: Ghost Imaging , 2018 .

[10]  A. Gatti,et al.  Coherent imaging of a pure phase object with classical incoherent light , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[11]  Yanhua Shih,et al.  The Physics of Turbulence-Free Ghost Imaging , 2016 .

[12]  Ari T. Friberg,et al.  Ghost imaging in the time domain , 2016, Nature Photonics.

[13]  R. Singh,et al.  Ghost diffraction holographic microscopy , 2020 .

[14]  A. Gatti,et al.  Correlated imaging, quantum and classical , 2003, quant-ph/0307187.

[15]  Jeffrey H. Shapiro,et al.  The physics of ghost imaging , 2012, Quantum Information Processing.

[16]  Wolfgang Elsäßer,et al.  Ghost Spectroscopy with Classical Thermal Light Emitted by a Superluminescent Diode , 2018 .

[17]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[18]  Y. Shih,et al.  Turbulence-free ghost imaging , 2011 .

[19]  Hybrid correlation holography with a single pixel detector. , 2017, Optics letters.

[20]  Shensheng Han,et al.  Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints , 2019, Optica.

[21]  Sergei P. Kulik,et al.  Infrared spectroscopy with visible light , 2016 .

[22]  A. Gatti,et al.  Ghost imaging schemes: fast and broadband. , 2004, Optics express.

[23]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.

[24]  Zhuo Xu,et al.  Ghost Imaging Based on Deep Learning , 2018, Scientific Reports.

[25]  Shensheng Han,et al.  Lensless Fourier-transform ghost imaging with classical incoherent light , 2007 .

[26]  J. Xiong,et al.  Ghost Difference Imaging Using One Single-Pixel Detector , 2021 .

[27]  A. Gatti,et al.  Ghost imaging using homodyne detection , 2004 .

[28]  Daniele Pelliccia,et al.  Ghost tomography , 2018, Optica.

[29]  Robert W. Boyd,et al.  Imaging with a small number of photons , 2014, Nature Communications.

[30]  R. Boyd,et al.  An introduction to ghost imaging: quantum and classical , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  F. Gori,et al.  Phase and amplitude retrieval in ghost diffraction from field-correlation measurements. , 2006, Physical review letters.

[32]  D. Ratner,et al.  Electron Ghost Imaging. , 2018, Physical review letters.