The impact of thermal effects on the performance of vertical-cavity surface-emitting lasers based on sub-monolayer InGaAs quantum dots

The laser characteristics of 0.98 µm vertical-cavity surface-emitting lasers based on sub-monolayer InGaAs quantum dots (QDs) were studied in a broad temperature range. Devices demonstrated low internal optical losses, high differential efficiency and relatively small resistances due to the QD active region together with an optimal design of doped distributed Bragg reflectors. It is found that the temperature dependence of threshold current and differential efficiency depends not only on the temperature sensitivity of the active region, but also on the lineshape of the gain curve and spectral misalignment between the gain maximum and cavity mode. A simple method of estimation of gain-cavity detuning has been proposed.

[1]  Ichiro Ogura,et al.  Room‐temperature lasing operation of a quantum‐dot vertical‐cavity surface‐emitting laser , 1996 .

[2]  M. Osinski,et al.  Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays , 1992 .

[3]  A. Forchel,et al.  Gain, index variation, and linewidth-enhancement factor in 980-nm quantum-well and quantum-dot lasers , 2005, IEEE Journal of Quantum Electronics.

[4]  Brian Thibeault,et al.  Estimation of scattering losses in dielectrically apertured vertical cavity lasers , 1996 .

[5]  Peter Blood,et al.  Temperature dependence of the lasing wavelength of InGaAs quantum dot lasers , 2001 .

[6]  Th. Forster,et al.  High‐power operation of strained InGaAs/AlGaAs single quantum well lasers , 1991 .

[7]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[8]  D. Bimberg,et al.  Quantum dot lasers , 2003, LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (Cat. No.00CH37080).

[9]  J. Gustavsson,et al.  Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief , 2004, IEEE Photonics Technology Letters.

[10]  A. N. Smirnov,et al.  Stresses in selectively oxidized GaAs/(AlGa)xOy structures , 2005 .

[11]  L. Coldren,et al.  Oxidation of AlGaAs layers for tapered apertures in vertical-cavity lasers , 1997 .

[12]  Larry A. Coldren,et al.  Vertical-Cavity Surface-Emitting Lasers , 2001 .

[13]  Young‐gu Ju Evaluation scheme for the design of poweroptimized single mode vertical-cavity surfaceemitting lasers. , 2004, Optics express.

[14]  Marek Osiński,et al.  THERMAL EFFECTS IN VERTICAL-CAVITY SURFACE-EMITTING LASERS , 1994 .

[15]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[16]  Toshihiko Baba,et al.  High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure , 2004 .

[17]  P. Dapkus,et al.  Influence of mirror reflectivity on laser performance of very-low-threshold vertical-cavity surface-emitting lasers , 1995, IEEE Photonics Technology Letters.

[18]  S.J. Chang,et al.  1.3-/spl mu/m InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE , 2006, IEEE Photonics Technology Letters.

[19]  Rainer Michalzik,et al.  4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes , 1997 .

[20]  G. S. Sokolovskii,et al.  VCSELs based on arrays of sub-monolayer InGaAs quantum dots , 2006 .

[21]  Fouad Karouta,et al.  Sealing method of dry etched AlAs/GaAs top mirrors in vertical cavity surface emitting lasers , 1999 .

[22]  Johann Peter Reithmaier,et al.  Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers , 2002 .

[23]  A. Zhukov,et al.  Quantum-dot edge-emitting lasers , 2003 .

[24]  S. Mogg,et al.  Temperature sensitivity of the threshold current of long-wavelength InGaAs-GaAs VCSELs with large gain-cavity detuning , 2004, IEEE Journal of Quantum Electronics.

[26]  L. Coldren,et al.  Lateral carrier confinement in miniature lasers using quantum dots , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  A. G. Kuzmenkov,et al.  Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots , 2006, IEEE Journal of Quantum Electronics.

[28]  Mikhail V. Maximov,et al.  High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers , 2005 .

[29]  A. P. Vasil’ev,et al.  Design and technology of vertical-cavity surface-emitting lasers with nonconducting epitaxial mirrors , 2003 .