On high-dimensional wavelet eigenanalysis

In this paper, we characterize the asymptotic and large scale behavior of the eigenvalues of wavelet random matrices in high dimensions. We assume that possibly non-Gaussian, finite-variance p-variate measurements are made of a low-dimensional r-variate (r ≪ p) fractional stochastic process with non-canonical scaling coordinates and in the presence of additive high-dimensional noise. The measurements are correlated both time-wise and between rows. We show that the r largest eigenvalues of the wavelet random matrices, when appropriately rescaled, converge to scale invariant functions in the high-dimensional limit. By contrast, the remaining p − r eigenvalues remain bounded. Under additional assumptions, we show that, up to a log transformation, the r largest eigenvalues of wavelet random matrices exhibit asymptotically Gaussian distributions. The results have direct consequences for statistical inference.

[1]  Sam Ouliaris,et al.  Testing for cointegration using principal components methods , 1988 .

[2]  D. Paul,et al.  Spectral analysis of sample autocovariance matrices of a class of linear time series in moderately high dimensions , 2017 .

[3]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[4]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[5]  M. Taqqu,et al.  How the instability of ranks under long memory affects large-sample inference , 2016, 1610.00690.

[6]  Alice Guionnet,et al.  Large deviations for Wigner's law and Voiculescu's non-commutative entropy , 1997 .

[7]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[8]  G. Didier,et al.  Wavelet estimation for operator fractional Brownian motion , 2015, 1501.06094.

[9]  Jean-Marc Bardet,et al.  A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter , 2008, 0811.2664.

[10]  W. Wu,et al.  Gaussian Approximation for High Dimensional Time Series , 2015, 1508.07036.

[11]  A. Steland,et al.  Large-sample approximations for variance-covariance matrices of high-dimensional time series , 2017, 1704.06230.

[12]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[13]  Q. Yao,et al.  On determination of cointegration ranks , 2009 .

[14]  J. Mason,et al.  Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields , 2002 .

[15]  L'aszl'o ErdHos,et al.  RANDOM MATRICES WITH SLOW CORRELATION DECAY , 2017, Forum of Mathematics, Sigma.

[16]  S. Johansen,et al.  Statistical Analysis of Global Surface Air Temperature and Sea Level Using Cointegration Methods , 2011 .

[17]  Clifford Lam,et al.  Factor modeling for high-dimensional time series: inference for the number of factors , 2012, 1206.0613.

[18]  D. Paul,et al.  Random matrix theory in statistics: A review , 2014 .

[19]  V. K. Rohatgi,et al.  Operator self similar stochastic processes in Rd , 1981 .

[20]  M. Meerschaert,et al.  Portfolio Modeling with Heavy Tailed Random Vectors , 2003 .

[21]  J. Lee,et al.  Tracy-Widom Distribution for the Largest Eigenvalue of Real Sample Covariance Matrices with General Population , 2014, 1409.4979.

[22]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[23]  M. Taqqu,et al.  Asymptotic normality of wavelet estimators of the memory parameter for linear processes , 2008, 0805.0778.

[24]  P. Massart,et al.  Minimum contrast estimators on sieves: exponential bounds and rates of convergence , 1998 .

[25]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[26]  M. Maejima,et al.  Operator-self-similar stable processes , 1994 .

[27]  David I. Stern,et al.  Cointegration analysis of hemispheric temperature relations , 2002 .

[28]  Stephen J. Brown The Number of Factors in Security Returns , 1989 .

[29]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[30]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[31]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[32]  Yingli Qin,et al.  Convergence rates of eigenvector empirical spectral distribution of large dimensional sample covariance matrix , 2013, 1311.5000.

[33]  C. Frei,et al.  The climate of daily precipitation in the Alps: development and analysis of a high‐resolution grid dataset from pan‐Alpine rain‐gauge data , 2014 .

[34]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[35]  P. Abry,et al.  On the initialization of the discrete wavelet transform algorithm , 1994, IEEE Signal Processing Letters.

[36]  G. Didier,et al.  Integral representations and properties of operator fractional Brownian motions , 2011, 1102.1822.

[37]  D. Sarkar,et al.  From random matrices to long range dependence , 2014, 1401.0780.

[38]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[39]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[40]  G. Didier,et al.  Two-step wavelet-based estimation for Gaussian mixed fractional processes , 2018, Statistical Inference for Stochastic Processes.

[41]  J. Magnus On Differentiating Eigenvalues and Eigenvectors , 1985, Econometric Theory.

[42]  Patrice Abry,et al.  Detecting and Estimating Multivariate Self-Similar Sources in High-Dimensional Noisy Mixtures , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[43]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[44]  M. Taqqu,et al.  Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes , 2011, 1105.1011.

[45]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[46]  P. Deift Universality for mathematical and physical systems , 2006, math-ph/0603038.

[47]  G. Didier,et al.  Tempered fractional Brownian motion: Wavelet estimation, modeling and testing , 2018, Applied and Computational Harmonic Analysis.

[48]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[49]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[50]  G. Didier,et al.  Adaptive wavelet decompositions of stationary time series ‡ , 2010 .

[51]  C. Tudor,et al.  Limiting behavior of large correlated Wishart matrices with chaotic entries , 2020, 2008.02120.

[52]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[53]  Eric Moulines,et al.  Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .

[54]  J. Najim,et al.  Unbounded largest eigenvalue of large sample covariance matrices: Asymptotics, fluctuations and applications , 2018, Linear Algebra and its Applications.

[55]  D. Paul,et al.  On the Marčenko-Pastur law for linear time series , 2013, 1310.7270.

[56]  P. Robinson,et al.  Identifying Cointegration by Eigenanalysis , 2015, Journal of the American Statistical Association.

[57]  Patrice Abry,et al.  Wavelet eigenvalue regression for n-variate operator fractional Brownian motion , 2017, J. Multivar. Anal..

[58]  Peter Guttorp,et al.  Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes , 2005, IEEE Transactions on Signal Processing.

[59]  M. Peligrad,et al.  On the empirical spectral distribution for matrices with long memory and independent rows , 2014, 1406.1216.

[60]  Patrice Abry,et al.  Bootstrap-based Bias Reduction for the Estimation of the Self-similarity Exponents of Multivariate Time Series , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[61]  Mark M. Meerschaert,et al.  Moment estimator for random vectors with heavy tails , 1999 .

[62]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[63]  G. Pap,et al.  Parameter estimation of selfsimilarity exponents , 2008 .

[64]  Ziliang Che,et al.  Universality of random matrices with correlated entries , 2016, 1604.05709.

[65]  G. Didier,et al.  Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions , 2011, Journal of Theoretical Probability.

[66]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[67]  Abdellah Salhi,et al.  On Partitioning Multivariate Self-Affine Time Series , 2017, IEEE Transactions on Evolutionary Computation.

[68]  M. Ledoux The concentration of measure phenomenon , 2001 .

[69]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[70]  Patrice Abry,et al.  Wavelet-Based Detection and Estimation of Fractional Lévy Signals in High Dimensions , 2019, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).