An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization

Particle Swarm Optimization (PSO) has recently emerged as a nature-inspired algorithm for real parameter optimization. This article describes a method for improving the final accuracy and the convergence speed of PSO by firstly adding a new coefficient (called mobility factor) to the position updating equation and secondly modulating the inertia weight according to the distance between a particle and the globally best position found so far. The two-fold modification tries to balance between the explorative and exploitative tendencies of the swarm with an objective of achieving better search performance. We also mathematically analyze the effect of the modifications on the dynamics of the PSO algorithm. The new algorithm has been shown to be statistically significantly better than the basic PSO and four of its state-of-the-art variants on a twelve-function test-suite in terms of speed, accuracy, and robustness.

[1]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[2]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[3]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[4]  Rajesh Kumar,et al.  A new hybrid multi-agent-based particle swarm optimisation technique , 2009, Int. J. Bio Inspired Comput..

[5]  Andries P. Engelbrecht,et al.  Effects of swarm size on Cooperative Particle Swarm Optimisers , 2001 .

[6]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[9]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[10]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[11]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[12]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Yun Shang,et al.  A Note on the Extended Rosenbrock Function , 2006 .

[14]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer and its adaptive variant , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[16]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[17]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[18]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Chu Kiong Loo,et al.  Hybrid particle swarm optimization algorithm with fine tuning operators , 2009, Int. J. Bio Inspired Comput..

[20]  Swagatam Das,et al.  A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence , 2007, 2007 IEEE Congress on Evolutionary Computation.

[21]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[22]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[23]  David B. Fogel,et al.  A Note on the Empirical Evaluation of Intermediate Recombination , 1995, Evolutionary Computation.

[24]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[25]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[26]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[27]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[28]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[29]  Qiu Chen,et al.  Particle swarm optimisation algorithm with forgetting character , 2010, Int. J. Bio Inspired Comput..

[30]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[31]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[32]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..