Towards a Framework for Aero-elastic Multidisciplinary Design Optimization of Horizontal Axis Wind Turbines

Multi-disciplinary Design Optimization (MDO) has been successfully applied in the aerospace industry, so given the similarities to wind turbine design, the application of MDO techniques is a potential opportunity to improve wind turbine design. MDO attempts to solve for optimal design parameters by considering the performance of multiple disciplines simultaneously. This approach differs from sequential optimization in which each discipline is optimized separately. Evaluating the design with a comprehensive approach leads to better balanced designs. This article presents a Multi-Disciplinary Feasible (MDF) framework that incorporates an aerodynamics code based on vortex methods with a nonlinear beam formulation for the blade aerodynamics and structural dynamics, in order to eventually study non-straight blades with arbitrary composite layups. In the current work, the framework is exercised to optimize a conventional design for a 100 m blade. It was found that obtaining accurate coupled gradients for a fully-relaxed wake simulation using explicit aerodynamic solution methods is very challenging. A rigid wake approach enabled more reliable convergence, and suggestions are given for future work in applying MDO to this class of wind turbine analysis methods.

[1]  Afungchui David,et al.  Optimum project for horizontal axis wind turbines ‘OPHWT’ , 2005 .

[2]  Dewey H. Hodges,et al.  Generalized Timoshenko Theory of the Variational Asymptotic Beam Sectional Analysis , 2005 .

[3]  Carlo L. Bottasso,et al.  Multi-disciplinary constrained optimization of wind turbines , 2010 .

[4]  James L. Tangler,et al.  The Evolution of Rotor and Blade Design , 2000 .

[5]  M. McWilliam,et al.  The Behavior of Fixed Point Iteration and Newton-Raphson Methods in Solving the Blade Element Momentum Equations , 2011 .

[6]  Ye Zhiquan,et al.  Aerodynamics optimum design procedure and program for the rotor of a horizontal-axis wind turbine , 1992 .

[7]  Curran Crawford,et al.  Development and Validation of LibAero , a Potential Flow Aerodynamics Library for Horizontal-Axis Wind Turbines , 2012 .

[8]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[9]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[10]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[11]  A. Toffolo,et al.  Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation , 2002 .

[12]  Curran Crawford,et al.  Updating and Optimization of a Coning Rotor Concept , 2008 .

[13]  Jean-Jacques Chattot Optimization of Wind Turbines Using Helicoidal Vortex Model , 2003 .

[14]  Dewey H. Hodges,et al.  A rigorous, engineer‐friendly approach for modelling realistic, composite rotor blades , 2007 .

[15]  Tim Cockerill,et al.  Site-specific design optimization of wind turbines , 1998 .

[16]  Carlos E. S. Cesnik,et al.  On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .

[17]  Michael S. Selig,et al.  Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs , 1999 .

[18]  J. Martins A coupled-adjoint method for high-fidelity aero-structural optimization , 2002 .

[19]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .

[20]  G. Schepers,et al.  Potentials for Site-Specific Design of MW Sized Wind Turbines , 2001 .

[21]  Ignacio Romero,et al.  The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .

[22]  Curran Crawford,et al.  Validation of Potential Flow Aerodynamics for Horizontal-Axis Wind Turbines in Steady Conditions using the MEXICO Project Experimental Data , 2011 .

[23]  Fernando L. Ponta,et al.  Structural Analysis of Wind-Turbine Blades by a Generalized Timoshenko Beam Model , 2010 .

[24]  J. Weissinger,et al.  The Lift Distribution of Swept-Back Wings , 1947 .

[25]  Jing Li,et al.  A geometrically exact curved beam theory and its finite element formulation/implementation , 2000 .

[26]  Curran Crawford,et al.  Comparison of Potential Flow Wake Models for Horizontal-Axis Wind Turbine Rotors , 2010 .

[27]  Peter Fuglsang,et al.  Site-Specific Design Optimization of 1.5–2.0 MW Wind Turbines , 2001 .

[28]  Curran Crawford,et al.  Optimal Rotors for Distributed Wind Turbines , 2009 .

[29]  Dewey H. Hodges,et al.  On asymptotically correct Timoshenko-like anisotropic beam theory , 2000 .

[30]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[31]  Richard G. J. Flay,et al.  The economic optimisation of horizontal axis wind turbine design , 1996 .

[32]  Gordan Jelenić,et al.  Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .

[33]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[34]  D. Hodges,et al.  Validation of the Variational Asymptotic Beam Sectional Analysis , 2002 .

[35]  Hui Chen,et al.  A critical assessment of computer tools for calculating composite wind turbine blade properties , 2009 .

[36]  Jian L. Zhou,et al.  User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints , 1994 .

[37]  Carlos E. S. Cesnik,et al.  Obliqueness effects in asymptotic cross-sectional analysis of composite beams , 2000 .

[38]  Spyros G. Voutsinas,et al.  STATE OF THE ART IN WIND TURBINE AERODYNAMICS AND AEROELASTICITY , 2006 .

[39]  Teruhiko Kida,et al.  Core spreading vortex methods in two-dimensional viscous flows , 1998 .

[40]  C. P. van Dam,et al.  Wind turbine generator trends for site‐specific tailoring , 2005 .

[41]  T. Diveux,et al.  Horizontal axis wind turbine systems: optimization using genetic algorithms , 2001 .

[42]  Georges-Henri Cottet,et al.  Artificial Viscosity Models for Vortex and Particle Methods , 1996 .

[43]  Dewey H. Hodges,et al.  Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams , 2004 .

[44]  Michael K. McWilliam,et al.  Composite Lay-up Optimization for Horizontal Axis Wind Turbine Blades , 2013 .

[45]  M. Crisfield,et al.  Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Carlo L. Bottasso,et al.  Optimization‐based study of bend–twist coupled rotor blades for passive and integrated passive/active load alleviation , 2012 .

[47]  Carlos E. S. Cesnik,et al.  On a simplified strain energy function for geometrically nonlinear behaviour of anisotropic beams , 1991 .

[48]  Wang Xudong,et al.  Shape Optimization of Wind Turbine Blades , 2009 .

[49]  Kristian Dixon,et al.  Fast Prototype Blade Design , 2009 .

[50]  Helge Aagaard Madsen,et al.  Optimization method for wind turbine rotors , 1999 .

[51]  Paul M. Weaver,et al.  Optimization of Wind Turbine Blade Spars , 2012 .

[52]  Michele Messina,et al.  Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory , 2007 .

[53]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[54]  M. J. Clifton-Smith,et al.  Wind Turbine Blade Optimisation with Tip Loss Corrections , 2009 .

[55]  Joaquim R. R. A. Martins,et al.  Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specic Winds , 2008 .