Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids

Titania–polymer nanohybrid thin films represent a new class of potential materials for optoelectronic applications. While most such nanohybrid thin films lack control in crystallinity, we report in this paper transparent nanohybrids of titania-polymethyl methacrylate (TiO2–PMMA) thin films having a remarkably enhanced nanocrystallinity. Post-treatments with water vapor at relatively low temperatures were applied on these thin films, following in situ sol–gel polymerization. They promoted rearrangement of flexible Ti–O–Ti bonds leading to enhanced crystallization of the TiO2 phase. The degree of TiO2 crystallinity in the resulting nanohybrid films was studied by using XRD, FTIR, UV–Vis spectroscopies and HRTEM. Both linear and nonlinear optical responses increase with the enhancement of TiO2 crystallinity in the nanohybrids. The highest two-photon absorption coefficient (β) and nonlinear refractive index (n2) were observed for the nanohybrid thin films with highest TiO2 crystallinity, as confirmed by open and closed aperture Z-scan techniques using 250 fs laser pulses at 800 nm, having a value of 2260 cm GW−1 and 6.2 × 10−2 cm2 GW−1, respectively.

[1]  P. Lorusso,et al.  Nonlinear optical characterisation of CdS and PbS quantum dots dispersed in a glass matrix , 2004 .

[2]  M. Gallazzi,et al.  Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule , 2004 .

[3]  John Wang,et al.  Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior , 2003 .

[4]  K. Koumoto,et al.  Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution , 2003 .

[5]  Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites , 2003, cond-mat/0301153.

[6]  Michel Langlet,et al.  Sol-Gel Preparation of Photocatalytic TiO2 Films on Polymer Substrates , 2002 .

[7]  P. P. Lottici,et al.  Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films , 2002 .

[8]  K. I. Gnanasekar,et al.  Direct conversion of TiO_2 sol to nanocrystalline anatase at 85 °C , 2002 .

[9]  Per-Olov Käll,et al.  Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature , 2002 .

[10]  Wen‐Chang Chen,et al.  High‐refractive‐index thin films prepared from aminoalkoxysilane‐capped pyromellitic dianhydride–titania hybrid materials , 2001 .

[11]  C. Coutier,et al.  Low Temperature Preparation of High Refractive Index and Mechanically Resistant Sol-gel TiO2 Films for Multilayer Antireflective Coating Applications , 2001 .

[12]  T. Minami,et al.  Effects of Addition of Poly(ethylene glycol) on the Formation of Anatase Nanocrystals in SiO2−TiO2 Gel Films with Hot Water Treatment , 2001 .

[13]  Wen-Chang Chen,et al.  High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)−Titania Materials , 2001 .

[14]  C. Sanchez,et al.  Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .

[15]  K. Kakegawa,et al.  Low Temperature Synthesis of Titania Gel Containing Anatase and Rutile , 2000 .

[16]  Wen‐Chang Chen,et al.  Synthesis and Characterization of Poly(methyl methacrylate)-Silica Hybrid Optical Thin Films , 2000 .

[17]  T. Minami,et al.  Transparent Anatase Nanocomposite Films by the Sol–Gel Process at Low Temperatures , 2000 .

[18]  S. Kuebler,et al.  Large Third-Order Electronic Polarizability of a Conjugated Porphyrin Polymer , 2000 .

[19]  Y. Lei,et al.  “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites , 1999 .

[20]  M. Langlet,et al.  Condensation and Densification Mechanism of Sol-Gel TiO2 Layers at Low Temperature , 1999 .

[21]  Jackie Y. Ying,et al.  Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , 1999 .

[22]  H. Imai,et al.  Preparation of Porous Anatase Coating from Sol‐Gel‐Derived Titanium Dioxide and Titanium Dioxide‐Silica by Water‐Vapor Exposure , 1999 .

[23]  Wen‐Chang Chen,et al.  Synthesis and characterization of trialkoxysilane-capped poly(methyl methacrylate)–titania hybrid optical thin films , 1999 .

[24]  Hongwei Jiang,et al.  From Simple Acid–Base Hydrolytic Chemistry to Soluble High Tg Inorganic–Organic Hybrid Materials with Large and Stable Second‐Order Nonlinear Optical Susceptibilities , 1998 .

[25]  F. Gan Optical Nonlinearity of Hybrid and Nanocomposite Materials Prepared by the Sol-Gel Method , 1998 .

[26]  Pengfei Wu,et al.  THE EFFECTS OF DIFFERENT INTERFACIAL ENVIRONMENTS ON THE OPTICAL NONLINEARITY OF NANOMETER-SIZED CDO ORGANOSOL , 1997 .

[27]  R. Vassoille,et al.  Hydrophobic hybrid inorganic‐organic thin film prepared by sol‐gel process for glass protection and strengthening applications , 1997 .

[28]  X. Yao,et al.  Preparation and optical properties of TiO2 nanocrystalline particles dispersed in SiO2 nano-composites , 1997 .

[29]  Jun Zhang,et al.  Poly(methyl methacrylate)–titania hybrid materials by sol–gel processing , 1997 .

[30]  H. Imai,et al.  Structural Changes in Sol-Gel Derived SiO2 and TiO2 Films by Exposure to Water Vapor , 1997 .

[31]  G. Carotenuto,et al.  Preparation and Characterization of Nanocomposite Thin Films for Optical Devices , 1996 .

[32]  Paras N. Prasad,et al.  Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides , 1996 .

[33]  Yan Zhang,et al.  POLAR ENHANCEMENT OF THE NONLINEAR-OPTICAL PROPERTIES OF FE2O3 MICROCRYSTALLITES , 1994 .

[34]  T. Yoko,et al.  Sol–Gel Preparation and Third-Order Nonlinear Optical Properties of TiO2 Thin Films , 1994 .

[35]  Bruce M. Novak,et al.  Hybrid nanocomposite materials―between inorganic glasses and organic polymers , 1993 .

[36]  Garth L. Wilkes,et al.  New high-refractive-index organic/inorganic hybrid materials from sol-gel processing , 1991 .

[37]  Y. Wang Nonlinear optical properties of nanometer-sized semiconductor clusters , 1991 .

[38]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[39]  L. Hench,et al.  The sol-gel process , 1990 .

[40]  Helmut K. Schmidt,et al.  New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process , 1984 .

[41]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.