System approximations based on Meixner-like models

In this study, the authors investigate the parametric complexity reduction of the Meixner-like model for linear discrete-time system representation. The use of the Meixner-like functions is more suitable than the use of Laguerre functions and Kautz functions especially when the system have a slow initial onset or delay. The coefficients of the Meixner-like model can be estimated recursively from input–output data by the new representation. Noting that the selection of an arbitrary pole for the Meixner-like functions can raise the parameter number of the Meixner-like model. However, when the pole is set to its optimal value, an optimal expansion of transfer functions is produced. Therefore an optimisation technique is developed to generate the optimal Meixner-like pole, which is achieved by an iterative method, that consists in minimising the mean square error between the system output and the model output. Theoretical analysis and a numerical simulation show the efficiency of the approach.

[1]  José Ragot,et al.  Online identification of the ARX model expansion on Laguerre orthonormal bases with filters on model input and output , 2013, Int. J. Control.

[2]  Albertus C. den Brinker,et al.  Meixner-like functions having a rational z-transform , 1995, Int. J. Circuit Theory Appl..

[3]  B. Wahlberg System identification using Laguerre models , 1991 .

[4]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[5]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[6]  Noël Tanguy,et al.  A simple algorithm for stable order reduction of z-domain Laguerre models , 2013, Signal Process..

[7]  Guy Albert Dumont,et al.  On PID controller tuning using orthonormal series identification , 1988, Autom..

[8]  Albertus C. den Brinker,et al.  Optimality condition for truncated generalized laguerre networks , 1995, Int. J. Circuit Theory Appl..

[9]  Jozsef Bokor,et al.  Approximate Identification in Laguerre and Kautz Bases , 1998, Autom..

[10]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[11]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[12]  I. M. Kulikovskikh,et al.  Unique condition for generalized Laguerre functions to solve pole position problem , 2015, Signal Process..

[13]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[14]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..

[15]  Musa H. Asyali,et al.  Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay , 2005, IEEE Transactions on Biomedical Engineering.

[16]  N. Tanguy,et al.  Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..

[17]  Pingkang Li,et al.  Closed-loop identification using Laguerre orthogonal functions for a virtual diesel engine , 2011, Int. J. Comput. Appl. Technol..

[18]  J. Ragot,et al.  Dynamic SISO and MISO system approximations based on optimal Laguerre models , 1998, IEEE Trans. Autom. Control..

[19]  T. Oliveira e Silva,et al.  On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..

[20]  F.P.A. Benders,et al.  Optimality conditions for truncated Kautz series , 1996 .