Correlated states in twisted double bilayer graphene

[1]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[2]  Quansheng Wu,et al.  Moiré Flat Bands in Twisted Double Bilayer Graphene. , 2019, Nano letters.

[3]  Kenji Watanabe,et al.  Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moir\'e Superlattice , 2019 .

[4]  P. Kim,et al.  Spin-polarized correlated insulator and superconductor in twisted double bilayer graphene. , 2019, 1903.08130.

[5]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[6]  T. Taniguchi,et al.  Large linear-in-temperature resistivity in twisted bilayer graphene , 2019, Nature Physics.

[7]  Kenji Watanabe,et al.  Electric Field Tunable Correlated States and Magnetic Phase Transitions in Twisted Bilayer-Bilayer Graphene , 2019, 1903.08596.

[8]  P. Kim,et al.  Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene , 2019, Nature Communications.

[9]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[10]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[11]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[12]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[13]  Feng,et al.  Signatures of Gate-Tunable Superconductivity in Trilayer Graphene/Boron Nitride Moiré Superlattice , 2019 .

[14]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[15]  Cheng-Cheng Liu,et al.  Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene. , 2018, Physical review letters.

[16]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[17]  L. Balents,et al.  Topological Superconductivity in Twisted Multilayer Graphene. , 2018, Physical review letters.

[18]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[19]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[20]  A. Vishwanath,et al.  Fragile Topology and Wannier Obstructions. , 2017, Physical review letters.

[21]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[22]  S. Larentis,et al.  Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene , 2017, Proceedings of the National Academy of Sciences.

[23]  S. Adam,et al.  Emergence of Tertiary Dirac Points in Graphene Moiré Superlattices. , 2017, Nano letters.

[24]  E. Kaxiras,et al.  Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. , 2016, Physical review letters.

[25]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[26]  Takashi Taniguchi,et al.  Tunable fractional quantum Hall phases in bilayer graphene , 2014, Science.

[27]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[28]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[29]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[30]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[31]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[32]  D. Mayou,et al.  Numerical studies of confined states in rotated bilayers of graphene , 2012, 1203.3144.

[33]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[34]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[35]  P. Kim,et al.  Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. , 2008, Physical review letters.

[36]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[37]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[38]  J. M. Kim,et al.  Ferromagnetism in the Mott Insulator Ba 2 NaOsO 6 , 2007 .

[39]  V. Crespi,et al.  Registry-dependent interlayer potential for graphitic systems , 2005 .

[40]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[41]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .