Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings

From a linear block code B over the Galois ring GR(4, m) with a k times n generator matrix and minimum Hamming distance d, a rate-k/n convolutional code over the ring Z4 with squared Euclidean free distance at least 2d and a nonrecursive encoder with memory at most m - 1 is constructed. When the generator matrix of B is systematic, the convolutional encoder is systematic, basic, noncatastrophic and minimal. Long codes constructed in this manner are shown to satisfy a Gilbert-Varshnmov bound.

[1]  Emma Wittenmark An Encounter with Convolutional Codes over Rings , 1998 .

[2]  Koichi Betsumiya,et al.  Jacobi forms over totally real fields and type II codes over Galois rings GR(2m, f) , 2004, Eur. J. Comb..

[3]  Rolf Johannesson,et al.  Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.

[4]  Patrick Solé,et al.  Bounds on the Minimum Homogeneous Distance of the pr-ary Image of Linear Block Codes over the Galois Ring GR(pr, m) , 2007, ISIT.

[5]  Patrick Solé,et al.  Bounds on the Minimum Homogeneous Distance of the ${p^{r}}$-ary Image of Linear Block Codes Over the Galois Ring ${\hbox{GR}}(p^{r},m)$ , 2007, IEEE Transactions on Information Theory.

[6]  Srijidtra Mahapakulchai,et al.  Design of ring convolutional trellis codes for MAP decoding of MPEG-4 images , 2004, IEEE Transactions on Communications.

[7]  J. L. Massey,et al.  Convolutional codes over rings , 1989 .

[8]  Sandro Zampieri,et al.  System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.

[9]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[10]  B. R. McDonald Finite Rings With Identity , 1974 .

[11]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[12]  Bo Hove,et al.  On Gilbert-Varshamov type bounds for Z2k-linear codes , 2001 .

[13]  Patrick Solé,et al.  EISENSTEIN LATTICES, GALOIS RINGS AND QUATERNARY CODES , 2006 .

[14]  Rolf Johannesson,et al.  Two 16-State, Rate R = 2/4 Trellis Codes Whose Free Distances Meet the Heller Bound , 1998, IEEE Trans. Inf. Theory.

[15]  C. Thommesen,et al.  On Gilbert-Varshamov type bounds for Z(2/sup k/)-linear codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).