Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings
暂无分享,去创建一个
[1] Emma Wittenmark. An Encounter with Convolutional Codes over Rings , 1998 .
[2] Koichi Betsumiya,et al. Jacobi forms over totally real fields and type II codes over Galois rings GR(2m, f) , 2004, Eur. J. Comb..
[3] Rolf Johannesson,et al. Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.
[4] Patrick Solé,et al. Bounds on the Minimum Homogeneous Distance of the pr-ary Image of Linear Block Codes over the Galois Ring GR(pr, m) , 2007, ISIT.
[5] Patrick Solé,et al. Bounds on the Minimum Homogeneous Distance of the ${p^{r}}$-ary Image of Linear Block Codes Over the Galois Ring ${\hbox{GR}}(p^{r},m)$ , 2007, IEEE Transactions on Information Theory.
[6] Srijidtra Mahapakulchai,et al. Design of ring convolutional trellis codes for MAP decoding of MPEG-4 images , 2004, IEEE Transactions on Communications.
[7] J. L. Massey,et al. Convolutional codes over rings , 1989 .
[8] Sandro Zampieri,et al. System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.
[9] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[10] B. R. McDonald. Finite Rings With Identity , 1974 .
[11] Z. Wan. Lectures on Finite Fields and Galois Rings , 2003 .
[12] Bo Hove,et al. On Gilbert-Varshamov type bounds for Z2k-linear codes , 2001 .
[13] Patrick Solé,et al. EISENSTEIN LATTICES, GALOIS RINGS AND QUATERNARY CODES , 2006 .
[14] Rolf Johannesson,et al. Two 16-State, Rate R = 2/4 Trellis Codes Whose Free Distances Meet the Heller Bound , 1998, IEEE Trans. Inf. Theory.
[15] C. Thommesen,et al. On Gilbert-Varshamov type bounds for Z(2/sup k/)-linear codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).